North Williston Road Scoping Study CCRPC

Town of Essex Selectboard Briefing October 21, 2013

Project Team

Name	Representing
Jason Charest and Michelle Boomhower	CCRPC
Dennis Lutz	Town of Essex
Bruce Hoar	Town of Williston
Derek Lyman	VTrans – Traffic Safety
Nick Wark	VTrans – Hydraulics
Rebecca Pfeiffer	VANR – Floodplain Management
Lucy Gibson	DuBois and King – Project Manager
Matt Murawski	DuBois and King – Hydrologist

Study Process

Month	Activities
April 2013	Project Initiation and Scoping Meeting with Project Team
May - June 2013	Assess existing conditions
July - August 2013	Public Outreach via Front Porch Form
July - August 2013	Hydrologic and Hydraulic Modeling
September 2013	Public Meeting in Essex to present alternatives
October 2013	Public Meetings in Williston and Essex
October 30, 2013	CIRC Alternatives Task Force Meeting

North Williston Road – WENTS Network

Residential and Agricultural Buildings

Agricultural Lands

Vorth Willigton Road

Floodway Boundary

New England Central Railroad

Winooski River

Route 117/River Road

Safety Issues

Operations Issues

Project Design Goals

- Address intersection safety and congestion
- Improve flood resiliency
 - Reduce duration of road closures
 - Better notification of closures and improved gates
 - Easier and quicker clean up and reopening of road
- Avoid any negative impacts to local agriculture
- Avoid impacts to the floodplain or increases in flood elevation

April 2011

May 2011

August 29, 2011 Tropical Storm Irene

Resiliency

- "A resilient transportation system is one that will continue to function throughout, or can be restored quickly soon after, a flood or other unanticipated disruption." *VTran*s
- Goal for this project: reduce the duration of road closures.

Hydraulic Screening Results

Alternative	Elevation Increase	Reduction in Probability of Overtopping	Modeled floodplain impacts	Impacts to Agricultural Activities	Cost
No Build	0 feet	0%	None	None	None
A1	+ 1.5 feet	17%	Possible	Minimal	Moderate
A2	+ 1.5 feet w/ culverts	17%	None	Moderate	High
B1	+ 3 feet	30%	Possible	Minimal	Moderate
B2	+ 3 feet w/ culverts	30%	Possible	Moderate	High
С	+11 feet	46%	Prohibitive	High	High
D	+12 feet bridge	49%	Possible	High	Extreme

Concerns About Raising the Road

- Erosion on opposite bank of Winooski River has increased in past decade, possibly due to past increase in road elevation.
- Increased velocity under bridge could contribute to scour.
- Culverts required to maintain flood elevation could become ineffective if clogged with debris
- Conclusion: Raising road by any amount is unlikely to garner permits

Options to Reduce Duration and Disruption of Closures

- Replace existing culvert with 6 feet concrete box culvert
- Intelligent signs to allow instant display of road closure alerts
- Stream gauge at bridge to allow more precision in need for closure
- Durable gates to prevent crossing during floods
- Reconstruct road bank at lowest elevation to prevent erosion and allow rapid re-opening

Warning Signs

Possible Sign Locations

Flood Detection and Warning

Install stream gauge on bridge to alert Town of Essex when flood levels require road closure

Roadway Design Features

Flatten slope for better hydraulic flow and reduced erosion

Gate Options

Replace and relocate gates to provide Improved protection and easier operation

Erosion Mitigation

300 feet segment where erosion is frequent

INTERSECTION

Average Annual Daily Traffic (AADT)

Vehicular Level of Service

	2012 AM Peak Hour					2012 P	M Peak Hour	
	LOS	Delay	Q Length (95%, veh)	V/C	LOS	Delay	Q Length (95%, veh)	V/C
NB Left	D	27.2	2.4	0.47	F	115.3	12.6	1.08
NB Right	В	10.1	0.2	0.06	В	12.4	1.0	0.26
WB Left	А	8.5	0.5	0.14	А	8.7	0.2	0.08

Agricultural Buildings High Speeds along River Road/ **Sight Distance** Vermont 117 to west = 430 ft Residential **Limited sight** distance from Sight Distance **North Williston Rd** to east = 500 ftRoute 117/River Road **Adjacent vehicles** Floodway block visibility **Drainage Channel High Crash Location #83** Culvert **Others in Essex:** Susie Wilson/Kellogg #28 VT 15/Susie Wilson #41 26

Crashes 2008 through 2012

Alternatives

- Unsignalized Improvements
 - Provide westbound left- and eastbound right-turning lanes to improve safety by clarifying movements and improve level of service for northbound lefts.
- Signalization Improvements
 - Includes unsignalized improvements plus signalization of the intersection.
- Roundabout
 - Single lane, 140 feet in diameter modern roundabout

Unsignalized and Signalized Improvements

Roundabout

2013 Level of Service

Alternative	AM LOS	AM Delay	AM V/C	PM LOS	PM Delay	PM V/C
No Build (northbound lefts)	D	27.2	0.47	F	115.3	1.08
Unsignalized (northbound lefts)	С	18.8	0.40	F	56.6	0.95
Signalized (overall)	А	9.2	0.32	А	9.6	0.53
Roundabout (overall)	А	8.2	0.26	А	9.5	0.55

2035 Level of Service

Alternative	AM LOS	AM Delay	AM V/C	PM LOS	PM Delay	PM V/C
Unsignalized (northbound lefts)	E	49.4	0.82	F	394.8	1.79
Signalized (overall)	A	9.9	0.44	В	11.1	0.62
Roundabout (overall)	A	8.5	0.36	А	9.5	0.55

Alternatives Screening

Alternative	Cost	Impact to Ag Lands and Hydric Soils	Right of way	Change in Volume on North Williston
Unsignalized	\$690,000	0.08 acres	0.27 acres	Negligible
Signal	\$1,140,000	0.08 acres	0.27 acres	Increase likely
Roundabout	\$1,370,000	0.21 acres	0.35 acres	Increase likely

- Construction costs only does not include right-of-way acquisition
- Utility relocation required for each alternative
- Additional archaeological investigation required for each alternative

Safety: Signal vs. Roundabout

Context	Signal	Roundabout
Allareas	-13%	-40%
Roads over 40 mph	-5%	-78%

- Based on Crash Reduction Factors developed by the FHWA
- Roundabouts have much better record of reducing crashes at intersections, especially for rural higher speed roads.
- Cost of crashes at intersection estimated at \$72,885 per crash, or \$290,000 per year

Alternatives Performance

Alternative	Safety - Crash Reduction	Congestion - LOS
Unsignalized	 Reduced crashes due to turning lanes 	 Minor improvement due to turning lanes LOS F - North Williston Rd at PM Peak hour
✓ Signal	 Reduced crashes from signal control and turning lanes Possible increase of rear-end collisions and high speed broadside crashes 	LOS A/B
✓ Roundabout	 Greatest crash and injury reduction due to design and low speed operations 	LOS A

Next Steps

- Present proposed project at CCRPC CIRC Alternatives meeting - October 30.
- Town of Essex endorsement of alternative(s).
- VTrans review of alternatives and selection.

