#### **Dan Albrecht**

| From:<br>Sent: | Kristen Balschunat <kristen@winooskinrcd.org><br/>Thursday, April 25, 2019 3:45 PM</kristen@winooskinrcd.org> |
|----------------|---------------------------------------------------------------------------------------------------------------|
|                |                                                                                                               |
| То:            | Ann Costandi; Chelsea Mandigo; Tim Grover; Tom Dipietro; Chris Robinson;                                      |
|                | Lbeaudoin@town.milton.vt.us; James Sherrard; Karen Adams; Jenna Olson; Ilackey@btv.aero;                      |
|                | Claire.Forbes@uvm.edu; Jennifer.Callahan@vermont.gov; Dan Albrecht; Dave Allerton                             |
| Cc:            | Gianna Petito                                                                                                 |
| Subject:       | MEMO: Homework for Water Quality Sampling Discussion                                                          |
| Attachments:   | Stream Team 2018 Water Quality Monitoring Report_FINAL (1).pdf; 2019 RRST LaRosa                              |
|                | Proposal.docx.pdf; Screenshot 2019-04-25 at 3.34.06 PM.png                                                    |

MEMO: Homework for Water Quality Sampling Discussion TO: CCRPC MS4 Subcommittee FROM: Kristen Balschunat, Stream Team Coordinator

Hello MS4 representatives. I'm writing to give you some "homework" in preparation for our discussion about the Stream Team water quality monitoring at the May MS4 meeting. Please come prepared with the answers to the six questions at the end of this email so we can have a productive discussion. My District Manager, Gianna, will also be there to help share how we interpreted the data and what further analysis could be done.

Some background - the LaRosa Partnership is a state-funded program that pays for the cost of processing samples at the lab. We submit a proposal annually outlining our sites, parameters and goals. This year LaRosa published four main sampling goals that they are willing to fund (see attached screenshot from RFP) Of note ... long term monitoring for the sake of long term monitoring is no longer supported. If we've been monitoring the same site on an impaired brook for 7 years, maybe it's time to switch it up by moving upstream to identify a source or selecting a new stream altogether.

Now it's time for you to reflect on which of those goals could be achieved in your town. Consider the following

- 1. Are there any water-related maps that may be helpful to bring to the table for this discussion?
- 2. What makes the waters in your town unique?
- 3. What are the top 3 ways people in your town interact with streams?
- 4. Which stream(s) are impaired? Do you know the main sources contributing to that impairment? What questions do you have about this stream?
- 5. Does your town have any BMP installations planned in the next 3 years? If so, where?
- 6. Which stream in your town is the healthiest? How can we promote it's continued success?

For your reference, here is a link to the Site Map from 2018 (working on final edits for 2019). <u>https://drive.google.com/open?id=1K98F4bB02E6p5lLKgSw7bxRSpQlzoo8Q&usp=sharing</u>

We are looking forward to a good discussion. Let me know if you have questions beforehand. We hope this meeting will set us up with a plan for the next 3-5 years of monitoring, so we appreciate the time you put into preparing. Also attached for your reference is 2018 Final Report and 2019 LaRosa Proposal (nearly approved - waiting for final paperwork).

Best,

Kristen

Kristen Balschunat (she/her)

# Table 1. LaRosa Analytical Service Grant Monitoring Categories

The table below includes information on the five typical LaRosa Partnership monitoring designs that have been conducted over the years. The goal is to provide additional guidance for volunteer water quality monitoring groups and recommend a more standardized approach to sampling design. This will support meeting the Vermont DEC's Watershed Management Division (WSMD) monitoring goals and the goals for local watershed groups. Many sampling programs may be able to achieve multiple goals though their programs.

- Waterbody Status, Spatial or Temporal Baseline monitoring/Stressor ID has the goal of identifying the conditions of waters across a basin or related to a specific stressed, high quality water, or waters above and below a WWTF. Sampling programs can target more than one of these goals and can serve to engage watershed groups in understanding water quality issues. Monitoring can be done on a regular schedule and does not require the targeting of high flow events although such sampling could be helpful to understand some pollutants generally tied to runoff (phosphorus/sediment).
- Source ID monitoring spatial, temporal or flow based has the goal of identifying sources of pollution impacting downstream waters. Monitoring can be broken down into parameters and water quality issues where targeting high flow events is not necessary and where targeting high flow events is strongly recommended for effectively identifying source areas. As a first cut, the areas where monitoring high flows is essential are those where the goal is to identify sources of phosphorus loading impacting lakes, sediment sources, and to a lesser degree nitrogen loading to Long Island Sound. The key to identifying pollutant sources is an iterative approach working upstream from waterbodies that have known elevated levels to bracket potential sources on larger streams and to sample smaller tributaries to narrow down the location of primary source areas. Through this iterative approach monitoring can be an ongoing effort over many years including sampling to measure impact of project implementation to determine success in reducing pollutant levels.
- Swimming Hole Monitoring has the goal of monitoring active swimming holes to provide the public information as to when it's safe to swim. This is a priority for swimming holes where sampling has not been done, is limited or have ongoing elevated levels of E. coli. Sampling is generally done weekly and the results are posted on-site at the swimming hole and through other means to notify the public.
- Evaluation of a treatment or management practice (Experimental studies) The LaRosa Partnership Program supports scientific studies conducted by, or in partnership with volunteer watershed groups. These studies have focused on the effectiveness of implementation practices at improving water quality, but other studies could be considered if they are of significant interest and importance in helping the Watershed Management Division with our monitoring goals. WWTF sampling to determine effectiveness can only be conducted during base flow periods. Monitoring can be done for one to three years to document existing conditions. This can be repeated in the future timed with the VTDEC-MAPP assessment phase of the planning cycle or changes in watershed that might increase loading.



## Volunteer Water Quality Monitoring Analytical Services: Rethink Runoff Stream Team

Proposal for 2019 LaRosa Partnership Program Submitted: 2/7/19

This proposal requests laboratory services for the Rethink Runoff/Stream Team volunteer water quality monitoring program. The Rethink Runoff Stream Team (RRST) is a project that engages citizens across a nine-municipality area (Burlington, Essex, Essex Junction, Milton, Shelburne, South Burlington, Williston, Colchester and Winooski) to implement projects that reduce nonpoint source pollution and stormwater volume at the local level. The program is managed by Municipal Separate Storm Sewer designated towns of Chittenden County (MS4 Committee) and run by the Winooski Natural Resources Conservation District.

## 1) Description of the project waters

The proposed sampling sites for 2019 include locations on Alder Brook, Allen Brook, Centennial Brook, Indian Brook, Engelsby Brook, Mallets Creek, Morehouse Brook, Muddy Brook, Munroe Brook, Potash Brook and Sunderland Brook. All eleven of these watersheds contain densely, developed urban and suburban areas. All streams, except for Allen Brook, have been identified as stormwater impaired by the VT DEC. Our data consistently shows high phosphorus and chloride levels above the EPA standard. Allen Brook is not listed as impaired so we hope to provide data to the Town of Milton so informed decisions can be made to maintain the good water quality. More details about specific sites and reasons for sampling can be found on page 2.

## 2) Needs for the data and intended data usage

RRST exists to inform the public about water quality concerns, and to inspire the adoption of behaviors that reduce the stormwater footprint of urban and suburban areas. Chittenden County is the most developed county in the state so it is important for residents to understand their contribution to the health of Lake Champlain. RRST can more effectively achieve the goal of public education by showing evidence about how developed lands impact stream health.

RRST goals for stream monitoring are as follows:

- 1. Build upon the current dataset to determine long-term trend conditions at each stream site.
- 2. Inform towns about effectiveness of BMP implementation and/or monitor impacts of new urban development.
- 3. Monitor higher quality waters to watch for signs of degradation
- 4. Inform communities about the condition of these streams, to inspire adoption of practices and behaviors that reduce nonpoint source pollution and stormwater volume.





#### 3) Sample Collection Methods

*Sampling Sites:* The table below summarizes the site locations. This year RRST proposes to add one new sampling site at Allen Brook and to abandon the following sites due to challenging access, multiple sampling efforts at the same site or the recommendation of our basin planner: Potash 40, Bartlett 10 and Munroe 10. The coordinates of the Morehouse sites will be slightly adjusted to capture the data desired by the City of Winooski for BMP analysis.

| Stream              | Location                                                  | Site ID          | Sampling Reason                                                                        | Types of<br>Samples               | Lat / Long             |
|---------------------|-----------------------------------------------------------|------------------|----------------------------------------------------------------------------------------|-----------------------------------|------------------------|
| Centennial<br>Brook | Grove Street in<br>Burlington                             | Centennial<br>10 | Long Term monitoring since 2012                                                        | TP,<br>Chloride                   | 44.48453,<br>-73.18423 |
|                     | Patchen Road in<br>Burlington                             | Centennial<br>20 | Monitoring since 2017                                                                  | TP,<br>Chloride                   | 44.47402,<br>-73.17334 |
| Indian<br>Brook     | Essex High<br>School                                      | Indian 10        | Long Term monitoring since 2012                                                        | TP,<br>Chloride                   | 44.49668,<br>-73.11093 |
|                     | Lang Farm in<br>Essex                                     | Indian 20        | Long Term monitoring since 2012                                                        | TP,<br>Chloride                   | 44.50442,<br>-73.09190 |
| Malletts<br>Creek   | McMullen Road                                             | Malletts 10      | Long Term monitoring since 2012                                                        | TP,<br>Chloride                   | 44.60855,<br>-73.10693 |
| Munroe<br>Brook     | Spear & Webster<br>Intersection                           | Munroe 20        | Monitor impact of new<br>housing development<br>upstream. Monitored since 2012         | TP,<br>Chloride,<br>Turbidit<br>y | 44.38984,<br>-73.20103 |
| Morehous<br>e Brook | Landry Park<br>Winooski - Pine<br>Grove Terrace<br>Branch | Morehouse<br>PGT | Town of Winooski will<br>install a detention pond this<br>year. Monitor effectiveness. | TP,<br>Chloride,<br>Turbidit<br>y | 44.50081,<br>-73.194   |
|                     | Landry Park -<br>Industrial Park<br>Branch                | Morehouse<br>IPB | Compare two branches of<br>Morehouse brook                                             | TP,<br>Chloride,<br>Turbidit<br>y | 44.50015,<br>-73.1937  |
| Muddy<br>Brook      | River Cove<br>Road in<br>Williston                        | Muddy 10         | Long Term monitoring since 2012                                                        | TP,<br>Chloride                   | 44.47293,<br>-73.13505 |
|                     | Exact location<br>TBD                                     | Muddy 20         | Monitor effectiveness of<br>new town easements in<br>watershed                         | TP,<br>Chloride                   | Needs<br>scoping       |
|                     | Van Sicklen<br>Road in<br>Williston                       | Muddy 30         | Long Term monitoring since 2012                                                        | TP,<br>Chloride                   | 44.42823,<br>-73.14622 |
| Potash              | Kindness Court                                            | Potash 10        | Long Term monitoring since                                                             | TP,                               | 44.44572,              |





#### **RETHINK RUNOFF**

| Brook                | in South<br>Burlington                         |                  | 2012                                                              | Chloride                          | -73.21348              |
|----------------------|------------------------------------------------|------------------|-------------------------------------------------------------------|-----------------------------------|------------------------|
|                      | Farrell Street in<br>South<br>Burlington       | Potash 20        | Long Term monitoring since 2012                                   | TP,<br>Chloride                   | 44.44660,<br>-73.20415 |
|                      | Dorset Street in<br>South<br>Burlington        | Potash 30        | Long Term monitoring since 2012                                   | TP,<br>Chloride                   | 44.45150,<br>-73.17849 |
| Engelsby<br>Brook    | Pine St in<br>Burlington                       | Engelsby 10      | Long Term monitoring since 2012                                   | TP,<br>Chloride                   | 44.45627,<br>-73.21394 |
|                      | Redstone<br>Campus in<br>Burlington            | Engelsby 20      | Monitoring since 2017                                             | TP,<br>Chloride                   | 44.46654,<br>-73.19741 |
| Sunderlan<br>d Brook | Pearl St Park in<br>Essex Junction             | Sunderland<br>10 | Part of Town of Essex chloride Study                              | TP,<br>Chloride                   | 44.50179,<br>-73.12983 |
|                      | Just above Rte<br>2/7 culvert in<br>Colchester | Sunderland<br>20 | Part of Town of Essex<br>chloride Study                           | TP,<br>Chloride                   | 44.51685,<br>-73.20421 |
| Sunnyside<br>Brook   | Near Hercules<br>Rd. Colchester                | Sunnyside<br>10  | Brook impaired for chloride, awaiting TMDL                        | TP,<br>Chloride                   | TBD                    |
| Allen<br>Brook       | Milton                                         | Allen 10         | Currently NOT stormwater<br>impaired. Will monitor for<br>changes | TP,<br>Chloride,<br>Turbidit<br>y | TBD - needs<br>scoping |
| Alder<br>Brook       | Off of Rte 289 in<br>Essex                     | Alder 10         | Part of Town of Essex<br>chloride Study                           | TP,<br>Chloride                   | 44.51742,<br>-73.06559 |

*Sampling Timeline:* Grab samples will be collected on five bi-weekly dates throughout the summer, to be consistent with the timeframe used in previous years. RRST proposes sampling take place on the Tuesday mornings of **June 24th**, **July 9th**, **July 23th**, **August 6th**, **and August 20st**. Samples will be submitted to the lab no later than 2pm on those dates. RRST also proposes sampling to be carried out during two rain events at six sites during the summer and will give the lab notice the day before sampling and submission to the lab.

*Samples:* RRST will take two samples at all stream sites to be analyzed for Total Phosphorus (TP) and Chloride (Cl-). Turbidity (TSS) will only be sampled at four sites. Volunteers will also collect field and duplicate samples for quality assurance. These will account for 10% of the entire sample amount. Duplicates and blanks will allow for errors in handling during sample collection and laboratory analysis to be pinpointed, respectively. RRST calculates **308 samples** will be returned to the lab for analysis over the course of the summer sampling period. (230 bi-weekly samples, 28 rainy day samples, 25 duplicates, 25 blanks)





*Sample collection:* RRST will hold a half-day training to teach volunteers how to properly sample and follow procedures for dropping of samples at the laboratory. Volunteers will be trained using the exact guideline and steps taught by the LaRosa training in the spring.

## 4) Description of how resulting data will be summarized and reported:

RRST will prepare a report summarizing the data using the appropriate template(s) provided by the VT DEC Watershed Management Division. An additional report will be prepared for the general public as appendix to the full report, which will contain visual graphs and tables depicting pollutant concentration over time and whether sites exceed EPA standards for each pollutant. The full report will be submitted to the VT DEC Watershed Management Division and partners, and the general report to the public via our newsletter (over 450 people subscribed), press release, social media, Rethink Runoff tabling and project events, and the Rethink Runoff website (www.rethinkrunoff.org)

## 5) Anticipated outcomes and efforts to inform the local public of project results:

The goal of RRST is to inspire a clean water culture in Chittenden County. We anticipate that as more community members learn about water quality concerns affecting local streams and lakes, the more they become empowered to reduce their stormwater footprint. This year RRST will host a Build Your Own Rain Barrel Workshop, a Stream Cleanup and two stormdrain mural projects. We will use these platforms to share our data and also give people the opportunity to engage in solutions. The most important message we can share is that every individual is responsible for the health of the streams in their watersheds.

The data will also be available for Vermont DEC staff. Examples of how this data could be used by VT DEC include 1) assisting the tactical basin planner in where source concerns areas may be/where potential water quality projects could have a positive impact, or 2) identifying where further monitoring may be needed to ascertain if a stream site should be included on VT's 303d list.

#### 6) Implementation plans leading to beneficial improvement in project waters:

RRST exists to inform and educate. The 2019 data report will be provided to each town's planning commission and stormwater department so that it can be taken into consideration during flow restoration plans development or updates. This report will also be made available to VT DEC.

## 7) Contact Information

Kristen Balschunat, Project Coordinator <u>kristen@winooskinrcd.org</u> 802-288-8155 ext. 104 300 Interstate Corporate Center, Suite 200 Williston, VT 05495

Gianna Petito, District Manager, WNRCD

#### gianna@winooskinrcd.org 802-778-3178

617 Comstock Road Berlin, VT 05602 Chelsea Mandigo, Environmental Technician and RRST co-chair





Village of Essex Public Works Department <u>Chelsea@essexjunction.org</u> 802-878-6943 ext. 105 Ann Costandi, Stormwater Coordinator and RRST co-chair Town of Essex Public Works Department

acostandi@essex.org 802-878-1344





# 2018 Water Quality Monitoring Report

## **Monitoring Team**

The Rethink Runoff Stream Team (formerly known as the Chittenden County Stream Team) is a program that engages citizens across a nine-municipality region to implement projects that reduce non-point source pollution and stormwater volume at the local level. The participating towns are Burlington, Colchester, Essex, Essex Junction, Milton, Shelburne, South Burlington, Williston, and Winooski. The Water Quality Monitoring program is managed by the Chittenden County Regional Planning Commission Clean Water Advisory Committee MS4 subcommittee, coordinated by the Winooski Natural Resources Conservation District, and made possible through the support of the Vermont Department of Environmental Conservation LaRosa program. This report describes the results from the 2018 collection season; the seventh, consecutive year data was collected by this volunteer-led stream water quality monitoring effort in Chittenden County.

## When, Where, and What the Stream Team Monitors

The Rethink Runoff Stream Team (RRST) has collected biweekly water quality samples at several pollutant "impaired" or "stressed" stream sites in Chittenden County since 2012. These urban or suburban streams suffer from excessive nutrient loads, sodium chloride, sedimentation, high temperatures, bacteria, and/or other pollutants. Samples were collected on six different dates in 2018: on five, scheduled bi-weekly dates and on one unscheduled "high-flow" date (i.e. during a rain event). High-flow sampling provides a snapshot of the potentially, elevated or diluted pollutant-loads moving through these systems when it rains. Samples were analyzed for turbidity, total phosphorus, and chloride at all 23 sites.

Biweekly sampling dates occurred on July 10<sup>th</sup>, July 24<sup>th</sup>, August 7<sup>th</sup>, and August 21<sup>st</sup> and September 4<sup>th</sup>, and all regular bi-weekly sampling occurred during dry/baseflow conditions. The proposed sampling dates (originally 6/26/18-8/21/18) were pushed two weeks later due to staff turnover within WNRCD to give the new Stream Team coordinator time to prepare for the volunteer training and sampling season. One rainy day sampling event occurred on August 18<sup>th</sup> at sites on Indian, Muddy, Potash, Centennial and Morehouse brooks. Table 1 indicates total rainfall in inches for the day of sampling and the day immediately preceding sampling. While baseflow sampling days all had less than 0.5 inches of rainfall, freshet sampling on August 18th had 1.65 inches.



Report prepared by: Kristen Balschunat & Gianna Petito Winooski Natural Resources Conservation District



Funded by: LaRosa Partnership, VT Department of Environmental Conservation Watershed Management Division **Table 1. Average regional rainfall, in inches, for the preceding day and day of sampling.** Rainfall data for each day was gathered from several station sites across the sampling region (Burlington, Colchester, and Essex) and a daily mean was calculated. Daily means were then summed for the preceding and day-of sampling events. Rainfall data was collected from the National Oceanic and Atmospheric Administration through their daily summaries maps:

https://gis.ncdc.noaa.gov/maps/ncei/summaries/daily The specific sampling sites and their locations are listed in Table 2. A map of the sites is shown in Figure 1.

| Date     | Total Rainfall (inches) |
|----------|-------------------------|
| 07/10/18 | 0.4                     |
| 07/24/18 | 0.3                     |
| 08/07/18 | 0.362                   |
| 08/18/18 | 1.65 (freshet)          |
| 08/21/18 | 0                       |
| 09/04/18 | 0.2                     |

**Table 2. Rethink Runoff Stream Team 2018 Water Quality Sampling Sites.** Note that sites located further up a streamshed are labeled with high numbers except at Sunderland where this labeling was switched and Sunderland 20 is actually downstream of Sunderland 10. Stream Team will look into fixing this labeling anomaly with our records and those of the lab starting next field season.

| Stream                                | Location                                                           | Site ID       | Lat / Long          |
|---------------------------------------|--------------------------------------------------------------------|---------------|---------------------|
| Centennial Brook                      | Grove Street in Burlington (by the parking lot for Schmanska Park) | Centennial 10 | 44.48453, -73.18423 |
|                                       | Patchen Road in South Burlington (through cemetery)                | Centennial 20 | 44.47402, -73.17334 |
| Indian Brook                          | Parking lot B of Essex High School                                 | Indian 10     | 44.49668, -73.11093 |
|                                       | Lang Barn in Essex                                                 | Indian 20     | 44.50442, -73.09190 |
| Malletts Creek                        | McMullen Road                                                      | Milton 10     | 44.60855, -73.10693 |
| Munroe Brook                          | Route 7 and Bay Road (by Red Apple Motel)                          | Munroe 10     | 44.40532, -73.21735 |
|                                       | Spear & Webster Intersection (just south of Kwiniaska Golf Course) | Munroe 20     | 44.38984, -73.20103 |
| Morehouse Brook<br>(One new site: 20) | Landry Park Winooski (Eastern trib)                                | Morehouse 10  | 44.50035, -73.19226 |
|                                       | Landry Park Winooski (main branch - west of Morehouse 10)          | Morehouse 20  | 44.50041, -73.19444 |









| Muddy Brook<br>(20- site changed)   | River Cove Road in Williston                                         | Muddy 10      | 44.47293, -73.13505 |
|-------------------------------------|----------------------------------------------------------------------|---------------|---------------------|
|                                     | S. Brownell Road Williston                                           | Muddy 20      | 44.44196, -73.13228 |
|                                     | Van Sicklen Road in Williston                                        | Muddy 30      | 44.42823, -73.14622 |
| Potash Brook<br>(40 - site changed) | Kindness Court in South Burlington<br>near Humane Society            | Potash 10     | 44.44572, -73.21348 |
|                                     | Farrell Street in South Burlington near<br>Klinger's Bakery          | Potash 20     | 44.44660, -73.20415 |
|                                     | Dorset Street in South Burlington                                    | Potash 30     | 44.45150, -73.17849 |
|                                     | Kimball Ave South Burlington                                         | Potash 40     | 44.45394, -73.14809 |
| Engelsby Brook                      | Pine St in Burlington near Champlain<br>Elementary Community Gardens | Engelsby 10   | 44.45627, -73.21394 |
|                                     | Behind UVM Redstone Campus in Burlington                             | Engelsby 20   | 44.46654, -73.19741 |
| Alder Brook (new)                   | Off Chapin Road in Essex                                             | Alder 10      | 44.51742, -73.06559 |
| Bartlett Brook (new)                | By Shearer Chevrolet in South<br>Burlington                          | Bartlett 10   | 44.42596, -73.21345 |
| Sunnyside Brook (new)               | Mountain View Drive in Colchester                                    | Sunnyside 10  | 44.50654, -73.17823 |
| Sunderland Brook<br>(new)           | In Pearl Street Park in Essex Junction                               | Sunderland 10 | 44.50179, -73.12983 |
|                                     | Off Pine Island Road in Colchester                                   | Sunderland 20 | 44.51685, -73.20421 |

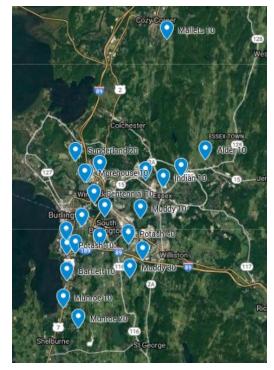



Figure 1: 2018 Rethink Runoff Stream Team Sample Sites. An interactive version of this map is available here:



## **Phosphorus Results**

Phosphorus is an essential nutrient for plants and animals that is naturally limited in most freshwater systems. Even a modest increase can set off a chain of undesirable events, such as algal blooms, accelerated plant growth, low dissolved oxygen, and the subsequent die off of aquatic life. Although phosphorus occurs naturally in soils and rocks, additional phosphorus enters waterways through runoff from sources such as fertilized lawns and cropland, pet waste, failing septic systems, animal manure from storage areas or livestock access, wastewater treatment plants, and streambank erosion.

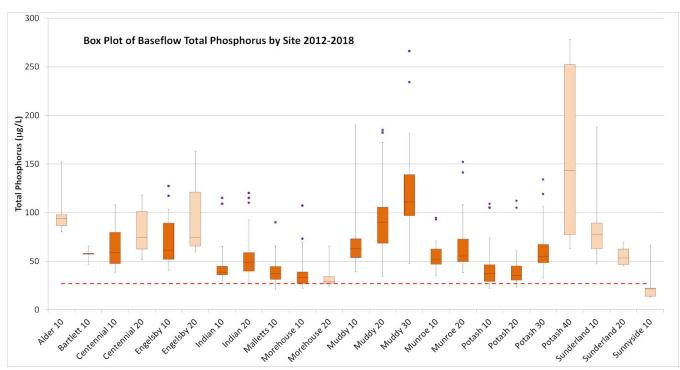
Phosphorus sample results continue to be high across all sampling sites. The VT 2016 water quality standard for phosphorus in Class B warm water medium-gradient streams is 27  $\mu$ g/L but the mean 2018 phosphorus level for every site exceeded this standard (see Table 2).

**Table 3. 2018 RRST Phosphorus Results Summary:** Mean phosphorus levels in  $\mu$ g/L during both baseflow (dry) and high-flow (rain) sampling events in 2018. Values exceeding the Vermont chronic chloride standard of 27  $\mu$ g/L are shown in red. Sites denoted with an \* had at least one sampling date in which blank or dupe results were flagged. Recalculated means with this data removed resulted in very similar values such that it was decided to keep them for descriptive statistics reporting purposes. Raw data is presented in Appendix C.

| Location         | Mean Phosphorus during Baseflow - Dry<br>Conditions | Phosphorus during Rain<br>Event |
|------------------|-----------------------------------------------------|---------------------------------|
| Alder 10*        | 102.06                                              |                                 |
| Bartlett 10      | 57.02                                               |                                 |
| Centennial 10    | 50.94                                               | 88.9                            |
| Centennial 20*   | 62.44                                               |                                 |
| Englesby 10*     | 82.12                                               |                                 |
| Englesby 20      | 98.56                                               |                                 |
| Indian 10        | 41.66                                               | 180                             |
| Indian 20        | 97.48                                               |                                 |
| Mallets Creek 10 | 39.68                                               |                                 |
| Morehouse 10     | 30.9                                                | 48.8                            |
| Morehouse 20     | 35.86                                               | 76.5                            |
| Muddy 10         | 50.4                                                |                                 |
| Muddy 20         | 41.6                                                |                                 |








| Muddy 30      | 116.46 | 92.3 |
|---------------|--------|------|
| Munroe 10*    | 60.86  |      |
| Munroe 20     | 88.96  |      |
| Potash 10     | 44.66  |      |
| Potash 20     | 35.82  |      |
| Potash 30     | 89.58  |      |
| Potash 40     | 318.54 |      |
| Sunderland 10 | 92.94  |      |
| Sunderland 20 | 55.26  |      |
| Sunnyside 10  | 27.36  |      |

## Phosphorus levels in Chittenden County Streams 2012-2018

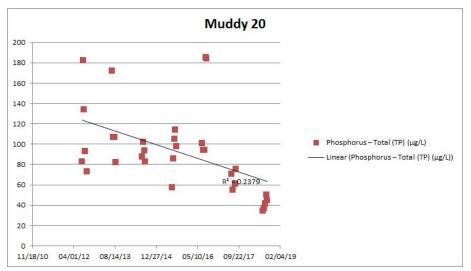
Since the onset of this monitoring program in 2012, mean concentrations of phosphorus during baseflow have remained notably above the 27  $\mu$ g/L standard at all stream sites. In fact only 7 out of the 23 sites sampled have ever exhibited phosphorus concentrations below this standard (Indian 20, Malletts 10, Morehouse 10 and 20, Potash 10 and 20, and Sunnyside 10). Out of these 7, only one site (Sunnyside 10) reports a median below the standard but the 1-yr sampling mean still falls above the standard (see Table 2 above). Sites of notable historic levels include Engelsby 20, Muddy 10, 20 and 30, Munroe 20, Potash 40, and Sunderland 10.





**Figure 2. Comparison of total phosphorus levels across sites 2012-2018.** Box plots indicate first and third quartiles and median values of total phosphorus concentrations for all sites. These values were calculated including sampling dates that may or may not have associated flagged dupe or blank samples. Lighter colored boxes indicate 1-2 years of sampling data, darker boxes indicate 6-7 years of sampling data. Dots indicate outliers which were identified as equal to or greater than 2 times the site's standard deviation. Red line indicates Vermont's 2016 Water Quality Standard of 27 micrograms/L.

Figure 2 suggests that phosphorus levels increase as sampling moves upstream. To test this hypothesis, RRST used scatter plots to graph phosphorus data over time by stream and ran statistical analyses on 8 streams that had more than one sampling site. Of the 8 streams that have more than one sampling location, 6 indicated a statistically significantly different value of phosphorus between sites, all of which presented statistically significantly higher concentrations of total phosphorus upstream . Table 4 summarizes the results of these tests. Appendix D summarizes statistics and graph visualizations. This result was somewhat surprising and merits more consideration since we assumed that total phosphorus increased in concentration as water moves downstream and more inputs are introduced.




**Table 4 Statistical Results of Phosphorus trends along stream lengths.** Statistical tests selected because data either had too small a sample size or was not normally distributed and therefore it was not appropriate to do a Paired T-test. While Wilcoxon Signed Rank recognizes dependent samples as could be the case up and down the same stream, the Kruksal-Wallis was the best tool available to reporter but it assumes independent samples so results should be seen with caution. Location of higher concentration was estimated through graphing. Note that all values and sampling dates were included in analysis as long as they could be paired (in the case of the Wilcoxon Signed Rank), including outliers and those flagged with dupe or blank concerns.

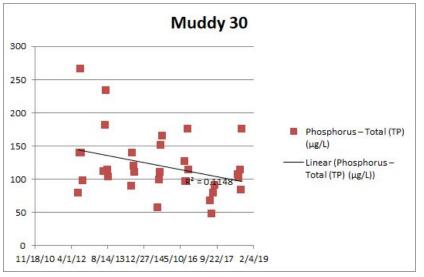

| Stream     | # of<br>Sites | Statistical Test Used | Statistically<br>significant<br>difference? | Location of higher<br>concentration? |
|------------|---------------|-----------------------|---------------------------------------------|--------------------------------------|
| Centennial | 2             | Wilcoxon Signed Rank  | Y                                           | Upstream                             |
| Engelsby   | 2             | Wilcoxon Signed Rank  | Ν                                           |                                      |
| Indian     | 2             | Wilcoxon Signed Rank  | Y                                           | Upstream                             |
| Morehouse  | 2             | Wilcoxon Signed Rank  | Ν                                           |                                      |
| Munroe     | 2             | Wilcoxon Signed Rank  | Y                                           | Upstream                             |
| Sunderland | 2             | Wilcoxon Signed Rank  | Y                                           | Upstream                             |
| Muddy      | 3             | Kruksal-Wallis        | Y                                           | Upstream                             |
| Potash     | 4             | Kruksal-Wallis        | Y                                           | Upstream                             |

Figure 2 also suggests that Muddy Brook has shown consistently high levels of Phosphorus as compared to other sites including some extremely high outliers. Interestingly, temporal data is suggesting a non-significant downward trend of Phosphorus concentrations at sites Muddy 20 and Muddy 30 with Muddy 10 holding relatively constant. This is unique to Muddy Brook and it's not clear what land use changes or restoration efforts could have contributed to this. Figures 3 and 4 show the suggested trends for Muddy 20 and 30 respectively.





**Figure 3. Total Phosphorus in Muddy 20 since 2012.** Scatter plot visually suggests a downward trend but R2 of the best fit line is still only about 0.24 and not significant.



**Figure 4. Total Phosphorus in Muddy 30 since 2012.** Scatter plot visually suggests a downward trend but R2 of the best fit line is still only about 0.12 and not significant.

## **Chloride Results**

Chloride is a component of salt found naturally in minerals and in oceans. While a low level of instream chloride can originate from natural sources, higher levels are generally due to the use of deicing salts. Elevated chloride levels in surface waters can negatively impact the health and reproduction of aquatic species, according to the Vermont Surface Water Management Strategy. The Stream Team took grab samples of chloride, which do not provide adequate data to label a stream impaired or acute, however, the data acts as a spot check. For reference, the Environmental Protection Agency's (EPA) and State of Vermont's (VT) current water quality standard for chloride is 230 mg/L (chronic criteria) and 860 mg/L (acute criteria). 230 mg/L is the highest concentration of chloride to which aquatic life can safely be



exposed for one hour once every 3 years. 860 mg/L is the highest concentration of chloride to which aquatic life can safely be exposed for four consecutive days once every 3 years.

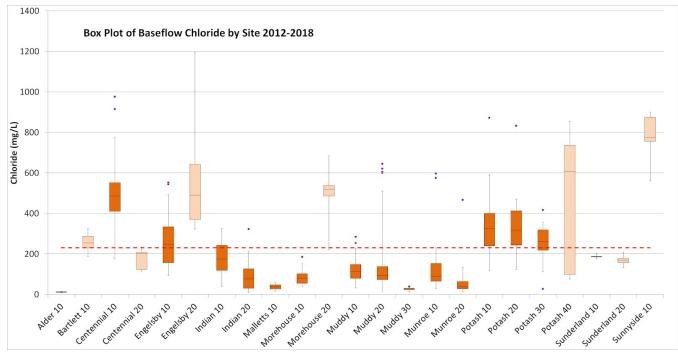
**Table 5. 2018 RRST Chloride Results Summary:** This table depicts mean chloride levels in mg/L during baseflow (dry) and high-flow (rain) sampling events in 2018. Values exceeding the Vermont chronic chloride standard of 230 mg/L are shown in red. No sites had a sampling date in which blank or dupe results were flagged for chloride. Raw data is presented in Appendix C.

| Location         | Mean Chloride in Dry Conditions Only | Chloride during Rain Events |
|------------------|--------------------------------------|-----------------------------|
| Alder 10         | 10.93                                |                             |
| Bartlett 10      | 256                                  |                             |
| Centennial 10    | 728                                  | 248                         |
| Centennial 20    | 176.2                                |                             |
| Englesby 10      | 401.8                                |                             |
| Englesby 20      | 711.8                                |                             |
| Indian 10        | 257.6                                | 41.55                       |
| Indian 20        | 180.5                                |                             |
| Mallets Creek 10 | 50.09                                |                             |
| Morehouse 10     | 133.17                               | 38.65                       |
| Morehouse 20     | 490.1                                | 111                         |
| Muddy 10         | 231.2                                |                             |
| Muddy 20         | 596                                  |                             |
| Muddy 30         | 34.2                                 | 35.7                        |
| Munroe 10        | 341.4                                |                             |
| Munroe 20        | 169.54                               |                             |
| Potash 10        | 570.4                                |                             |
| Potash 20        | 600.2                                |                             |
| Potash 30        | 330                                  |                             |










| Potash 40     | 737.1 |  |
|---------------|-------|--|
| Sunderland 10 | 187.2 |  |
| Sunderland 20 | 168.2 |  |
| Sunnyside 10  | 773   |  |

While in 2017 only thee sampled brooks presented mean values above of 230 mg/L, in 2018 nine brooks presented exceedances although this increase is partially attributed to the addition of new sampling sites of concern. Similar to 2017, chloride levels were higher during baseflow conditions in the majority of cases which is suspected to be due to dilution. Chloride grab sample levels exceeded 860 mg chloride/L, in Centennial 10 and Engelsby 20 in 2018. Both streams exceeded this value on 7/10/18 and 7/24/18. This is the first time this value was surpassed in any individual sample over this seven year period. This could result in a need for more continuous monitoring at these sites to gain continuous-flow data.

## Chloride levels in Chittenden County Streams 2012-2018

Since the onset of this monitoring program, mean chloride levels at Centennial 10 and Potash 10, 20 and 30 have remained notably above 230 mg/L standard. Recently added sampling sites have also presented alarmingly high data including Engelsby 20, Morehouse 20, Potash 40, and Sunnyside 10.



**Figure 5 - Comparison of Chloride levels across sites 2012-2018.** Box plots indicate first and third quartiles and median values of chloride levels (mg/L) for all sites. Lighter colored boxes indicate 1-2 years of sampling data, darker boxes indicate 6-7 years of sampling data. Dots indicate outliers which were identified as equal to or greater than 2 times the site's standard deviation. EPA's and Vermont's standard for 4-day average chloride levels (230 mg/L) is shown by the red line.



There is not as clear a link between location in the watershed and chloride levels as there is for phosphorus levels but several streams presented statistically significantly different chloride levels across sampling sites. Of the 8 streams that have more than one sampling location, 7 indicated a statistically significantly different value of Chloride between sites. This information could be useful in pin-pointing chloride pressure points along the stream length for intervention purposes. Table 6 summarizes the results of these statistical tests. Appendix E summarizes statistics and graph visualizations.

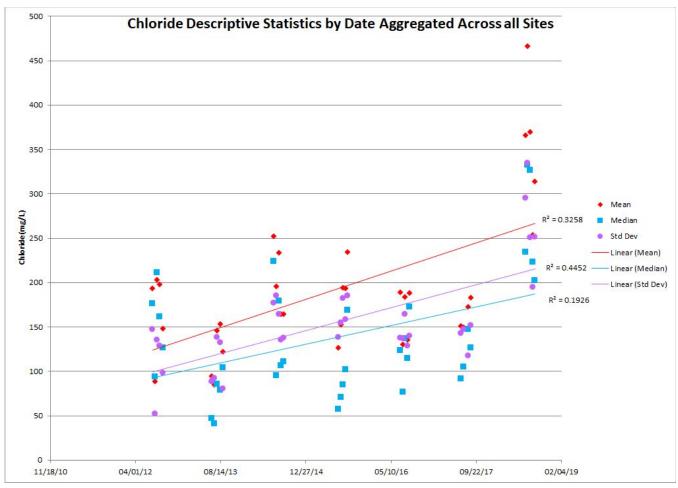

| Stream     | # of<br>Sites | Statistical Test Used | Statistically<br>significant<br>difference? | Location of higher<br>concentration? |
|------------|---------------|-----------------------|---------------------------------------------|--------------------------------------|
| Centennial | 2             | Wilcoxon Signed Rank  | Y                                           | Downstream                           |
| Engelsby   | 2             | Wilcoxon Signed Rank  | Y                                           | Upstream                             |
| Indian     | 2             | Wilcoxon Signed Rank  | Y                                           | Downstream                           |
| Morehouse  | 2             | Wilcoxon Signed Rank  | Y                                           | Upstream                             |
| Munroe     | 2             | Wilcoxon Signed Rank  | Y                                           | Downstream                           |
| Sunderland | 2             | Wilcoxon Signed Rank  | Ν                                           |                                      |
| Muddy      | 3             | Kruksal-Wallis        | Y                                           | Midstream (site 20)                  |
| Potash     | 4             | Kruksal-Wallis        | Y                                           | Unclear                              |

Table 6 Statistical Results of Chloride trends along stream lengths. See Table 4 note for details.

Chloride data from this sampling program suggests that of the 14 sites that have been sampled for 6 or more years, chloride levels are trending upwards in 10 of them (Centennial 10, Engelsby 10, Indian 10 and 20, Malletts 10, Muddy 30, Munroe 10 and 20, and Potash 10 and 20). These trends are not statistically significant but highlight an important stressor to monitor closely. Appendix F documents graphs of these trends.

Aggregated data also suggests a general increasing trend in chloride. Figure 6 below shows that e mean, median, and standard deviation values have all increased slightly over time.





**Figure 6. Descriptive Statistics for chloride data gathered across sites aggregated by date**. Each sampling date since June 2016 had chloride values across sites averaged to determine mean, median, and standard deviation for the entire sampling area.

## **Turbidity Results**

The turbidity of a water sample refers to its cloudiness. This measurement is based on the amount of algae, microbes, and sediment suspended in the water. High turbidity levels can negatively impact aquatic life by raising water temperature, decreasing forage and cover, and harming gill function, and has the potential to increase the presence and number disease-causing organisms. Turbidity measurements can also be used as an indicator for erosion and increased nutrient levels in streams. The Vermont Water Quality Standards state that turbidity should not exceed 10 NTU (nepholometric turbidity units) in cold-water fish habitat and 25 NTU in warm-water fish habitat.



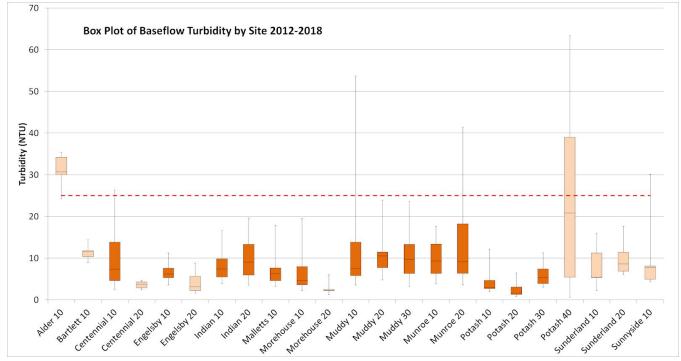
 
 Table 7. 2018 RRST Turbidity Results Summary.
 Mean turbidity levels in NTU baseflow (dry) and high-flow (rain)
 sampling events in 2018. Overall mean values exceeding the Vermont standard of 25 NTU are shown in red. Raw data is presented in Appendix C.

| Location         | Mean Turbidity in Dry Conditions Only | Turbidity during Rain Event |
|------------------|---------------------------------------|-----------------------------|
| Alder 10         | 30.9                                  |                             |
| Bartlett 10      | 11.402                                |                             |
| Centennial 10    | 5.198                                 | 18.2                        |
| Centennial 20    | 3.462                                 |                             |
| Englesby 10      | 6.92                                  |                             |
| Englesby 20      | 2.242                                 |                             |
| Indian 10        | 7.738                                 | 64.9                        |
| Indian 20        | 9.104                                 |                             |
| Mallets Creek 10 | 4.772                                 |                             |
| Morehouse 10     | 5.938                                 | 8.52                        |
| Morehouse 20     | 2.816                                 | 21.3                        |
| Muddy 10         | 6.252                                 |                             |
| Muddy 20         | 5.928                                 |                             |
| Muddy 30         | 17.68                                 | 11.5                        |
| Munroe 10        | 6.724                                 |                             |
| Munroe 20        | 18.9                                  |                             |
| Potash 10        | 4.868                                 |                             |
| Potash 20        | 1.488                                 |                             |
| Potash 30        | 10.782                                |                             |
| Potash 40        | 39.32                                 |                             |
| Sunderland 10    | 8.032                                 |                             |





Natura/




| Sunderland 20 | 10.106 |  |
|---------------|--------|--|
| Sunnyside 10  | 11.044 |  |

Mean baseflow turbidity levels did not exceed the VT Water Quality standard for turbidity of 25 nephelometric units (NTU) for warm-water fish habitat in 2018 except at Potash 40 and Alder 10. This represents an increase of two sites as compared to 2017 but one of these sites was newly added in 2018. As suspected, turbidity concentrations were mostly higher during rain events, and surpassed standards on Indian Brook alone.

## **Turbidity Levels in Chittenden County Streams 2012-2018**

Mean, baseflow turbidity values have only rarely exceeded the VT standard for warm-water streams of 25 NTU over the seven year sampling period. Of note, however, is the high turbidity recorded for new sampling sites Alder 10 and Potash 40. Higher turbidity in Alder 10 is not surprising because the site is comparatively more agricultural with a couple farms and potential field runoff nearby. Turbidity has not been included in sampling support requests for the 2019 field season but will be revisited in 2020.



**Figure 7 - Comparison of turbidity levels 2012-2018 during baseflow (dry) conditions.** The standard proposed by the State of Vermont for mean turbidity at baseflow in medium gradient, warm water streams (25 NTU) is indicated by the red line. These values were calculated including sampling dates that may or may not have associated flagged dupe or blank samples.

Importantly, it was challenging to secure valid turbidity data for the 2018 sampling season. Appendix A will reveal a mean relative percent difference between duplicate and actual samples above the acceptable 15%. Some but not all of this was due to having very low sample values in relation to test sensitivity.



This adds to the Stream Team's resolve to remove this parameter from future sampling activities for the time being.

Turbidity was statistically significantly different along only two streams (Morehouse and Potash). The Morehouse site results, while significant, both fell under the water quality standards such that the difference is of less interest to the research team. In contrast, Potash 40 presented turbidity levels which both exceeded water quality standards and were significantly different from other sites along that brook. The sampling team suspects this could be due to the unique hydrology of Potash 40 which is located among a complex of artificial wetlands within an industrial park. The water has no noticeable flow rate or direction and presents less as a stream and more as a marsh. It is suspected that in-stream sampling practices might disturb a lot of bottom sediment in such a setting thereby leading to higher turbidity readings. Considering this, Potash 40 has been removed from the 2019 sampling program.

Visualization revealed no notable trends in turbidity data over time and it is therefore not currently recognized as a high priority threat.

## Conclusion

The Rethink Runoff Stream Team has monitored chloride, phosphorus, and turbidity in various, stormwater impaired streams in Chittenden County for the past seven consecutive years (2012-2018). The 2018 season's results are similar to those obtained over the past six years, and indicate that all stream sites have sustained phosphorus levels well above the Vermont standard and that chloride is becoming a prevalent and growing concern.

Phosphorus levels in almost all sampled streams have remained two to four times the Vermont water quality standard of  $27 \mu g/L$ . Muddy Brook continues to maintain high levels of phosphorus although values are potentially trending downwards. Six streams sampled also showed statistically significantly higher concentrations of total phosphorus upstream as opposed to downstream which presents an opportunity to explore localized stressors. It's important to consider that while phosphorus levels are presenting high in many sites, turbidity levels are low. This provides some clues as to sources of phosphorus and should inform phosphorus reduction efforts. For example, it is possible these high phosphorus values can be attributed to more urban-like runoff such as car wash detergents, liquid lawn fertilizers, and pet waste.

Chloride levels continue to surpass standards in several streams, most notably at Centennial 10, Engelsby 20, Morehouse 20, Potash 40, and Sunnyside 10. For the first time in Stream Team's sampling history, chloride levels exceeded the EPA's and VT's acute standard of 860 mg chloride/L on the same two sampling dates at both Centennial 10 and Engelsby 20. As mentioned in prior year reports it is suspected that Engelsby's high levels are due to a nearby parking lots on the UVM campus but further assessments should consider rising stressors across the sampling region at all sites of concern.

Low turbidity values in most sites reveal this does not appear to be a significant stressor in the Chittenden County area although research team should consider potential sediment inputs upstream of



Alder 10 for remediation. After seven years of showing minimal concern, turbidity will be abandoned at most locations in the 2019 season.

There will be a few sampling adjustments made to the 2019 sampling effort. Potash 40 will be removed because of its unique and confounding hydrological conditions that complicates data analysis. Munroe 10 seems to be located physically too close to Munroe 20 to be giving any valuable information on landscape impacts so it will similarly be abandoned. Munroe 20 will be kept, however as a valuable data point because a housing development is planned and will be implemented upstream soon. Finally, Bartlett 10 will be removed because it is already sampled by a team from UVM.

It became clear this year that, moving forward, the Stream Team needs explicit guidance and documented practices in the QAPP for dealing with outliers and data points whose duplicates or blanks were flagged. For 2018 analysis all data points were included because those whose duplicates or blanks were flagged, still had values less than two standard deviations from the mean. Outliers, similarly, only presented when multi-year data was assessed such that for 2018-specific descriptive statistics, all data points were included. Given the small sampling sizes, however, (5 - 6 data points per site per year) this may not be a reliable practice for future analysis and consultation will be sought from the La Rosa Partnership for technical guidance on this practice.

Finally, it is the goal of this team to improve outward reporting of these data such that each stream could eventually receive some type of scorecard and summary sheet across the multiple parameters evaluated. We expect that scoring, and then ranking streams holistically is one step towards simplifying where to direct remediation efforts. This may be attempted in the 2019 report.







Appendix A. Quality Assurance Measures for phosphorus, chloride, and turbidity sampling in 2018.









| RPD Analysis |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                           |  |  |
|--------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------|--|--|
| Date         | Location      | Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RPD (%) |                                           |  |  |
| 07/10/18     | Munroe 20     | Chloride (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00    | ар. — — — — — — — — — — — — — — — — — — — |  |  |
| 07/10/10     | indinoc 20    | TP(ug P/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.52   |                                           |  |  |
|              |               | Turbidity (NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.92    | 8                                         |  |  |
|              | Muddy 10      | Chloride (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.59    | ē                                         |  |  |
|              | ividday 10    | TP(ug P/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.96    |                                           |  |  |
|              |               | Turbidity (NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.79    |                                           |  |  |
|              | 2<br>2007     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.75    |                                           |  |  |
|              | Engelsby 10   | Chloride (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.61    |                                           |  |  |
|              |               | TP(ug P/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 71.28   |                                           |  |  |
|              |               | Turbidity (NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00    |                                           |  |  |
| 07/24/18     | Potash 20     | Chloride (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.48    |                                           |  |  |
|              |               | TP(ug P/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00    |                                           |  |  |
|              |               | Turbidity (NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.62   |                                           |  |  |
|              | Muddy 30      | Chloride (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.20    |                                           |  |  |
|              |               | TP(ug P/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.98    |                                           |  |  |
|              |               | Turbidity (NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.96    |                                           |  |  |
|              | Indian 10     | Chloride (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.28    |                                           |  |  |
|              |               | TP(ug P/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.78    |                                           |  |  |
|              |               | Turbidity (NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.57    |                                           |  |  |
| 08/07/18     | Potash 30     | Chloride (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00    |                                           |  |  |
|              |               | TP(ug P/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.91    |                                           |  |  |
|              |               | Turbidity (NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.76    | 1                                         |  |  |
|              | Munroe 10     | Chloride (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.87    |                                           |  |  |
|              | indinoc 10    | TP(ug P/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.23   |                                           |  |  |
|              |               | Turbidity (NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.16   |                                           |  |  |
|              | Indian 20     | Chloride (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.49    |                                           |  |  |
|              | 110101120     | TP(ug P/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.08    |                                           |  |  |
|              |               | Turbidity (NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.61   |                                           |  |  |
| 08/21/18     | Potash 40     | Chloride (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.70    |                                           |  |  |
| 00,21,10     | 100051140     | TP(ug P/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.81    |                                           |  |  |
|              |               | Turbidity (NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 52.12   |                                           |  |  |
|              | Malletts 10   | Chloride (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.94    |                                           |  |  |
|              | Marietts 10   | TP(ug P/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.60    |                                           |  |  |
|              |               | <ul> <li>Second and the second se</li></ul> | 4.62    |                                           |  |  |
|              | Domious 10    | Turbidity (NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | ÷                                         |  |  |
|              | Bartlett 10   | Chloride (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.78    | ÷                                         |  |  |
|              |               | TP(ug P/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.69    | 6                                         |  |  |
| 00/04/40     | C             | Turbidity (NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.22    | 6                                         |  |  |
| 09/04/18     | Sunderland 10 | Chloride (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00    |                                           |  |  |
|              |               | TP(ug P/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.52    |                                           |  |  |
|              |               | Turbidity (NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33.93   |                                           |  |  |
|              | Morehouse 10  | Chloride (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.80    | £                                         |  |  |
|              |               | TP(ug P/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.66   |                                           |  |  |
|              |               | Turbidity (NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 89.69   |                                           |  |  |
|              | Centennial 20 | Chloride (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.81    |                                           |  |  |
|              |               | TP(ug P/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24.39   |                                           |  |  |
|              |               | Turbidity (NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38.43   |                                           |  |  |
|              |               | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Actual  | Target                                    |  |  |
| м            | ean RPD       | Chloride (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.10    |                                           |  |  |
| IVI          | culture.      | TP(ug P/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.83   | ≤30                                       |  |  |
|              |               | Turbidity (NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.63   | ≤15                                       |  |  |









## **Appendix B. Project Completeness**

Project proposal anticipated 5 dates for baseflow sampling across 23 sites (115 samples per parameter) as well as 2 rain dates sampling across 5 sites (10 samples per parameter). This is a total of 125 samples per parameter not including duplicates and blanks.

| Parameter        | Number of Samples<br>Anticipated (not<br>including blanks and<br>Dupes) = 23 sites*5<br>sampling dates | Number of Valid<br>Samples* Collected<br>and Analyzed | Percent Complete |
|------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------|
| Chloride         | 125                                                                                                    | 121                                                   | 97%              |
| Total Phosphorus | 125                                                                                                    | 116                                                   | 93%              |
| Turbidity        | 125                                                                                                    | 117                                                   | 94%              |

\*"Valid sample" includes all samples not flagged by issues that arose from blank or dupe results

**Appendix C. Individual Sample Results.** Boxes highlighted in yellow indicate issue flagged by inconsistent blank result. Boxes highlighted in red indicate sample whose duplicate is notably different in value. All values included in graphing and statistical analyses of 2018 report.

| Sample<br>Number | Location       | Date      | Chloride<br>(mg/L) | TP(ug<br>P/L) | Turbidity<br>(NTU) |
|------------------|----------------|-----------|--------------------|---------------|--------------------|
| 181280-01        | Alder 10       | 7/10/2018 | 12                 | 152           | 35.3               |
| 181398-01        | Alder 10       | 7/24/2018 | 13.4               | 97.8          | 24.3               |
| 181538-01        | Alder 10       | 8/7/2018  | 9.73               | 86.7          | 30                 |
| 181652-01        | Alder 10       | 8/21/2018 | 7.82               | 80.1          | 34.2               |
| 181809-01        | Alder 10       | 9/4/2018  | 11.7               | 93.7          | 30.7               |
| 181280-02        | Alder 10 Blank | 7/10/2018 | < 2                | 5.48          | < 0.2              |
| 181280-03        | Bartlett 10    | 7/10/2018 | 229                | 57.8          | 11.6               |
| 181398-02        | Bartlett 10    | 7/24/2018 | 322                | 56.8          | 10.3               |
| 181538-02        | Bartlett 10    | 8/7/2018  | 288                | 65.7          | 14.4               |







| 181652-02 | Bartlett 10           | 8/21/2018 | 254 | 46.9 | 11.8  |
|-----------|-----------------------|-----------|-----|------|-------|
| 181809-02 | Bartlett 10           | 9/4/2018  | 187 | 57.9 | 8.91  |
| 181652-03 | Bartlett 10 Field Dup | 8/21/2018 | 256 | 47.7 | 11.2  |
| 181398-04 | Centannial 10 Blank   | 7/24/2018 | < 2 | < 5  | < 0.2 |
| 181280-04 | Centennial 10         | 7/10/2018 | 915 | 46.4 | 3.79  |
| 181398-03 | Centennial 10         | 7/24/2018 | 976 | 57.7 | 7.39  |
| 181538-03 | Centennial 10         | 8/7/2018  | 775 | 40.9 | 3.2   |
| 181629-01 | Centennial 10         | 8/18/2018 | 248 | 88.9 | 18.2  |
| 181652-04 | Centennial 10         | 8/21/2018 | 430 | 47.7 | 6.08  |
| 181809-03 | Centennial 10         | 9/4/2018  | 544 | 62   | 5.53  |
| 181280-05 | Centennial 10 Blank   | 7/10/2018 | < 2 | < 5  | < 0.2 |
| 181280-06 | Centennial 20         | 7/10/2018 | 234 | 74.1 | 2.88  |
| 181398-05 | Centennial 20         | 7/24/2018 | 202 | 62.3 | 3.7   |
| 181538-04 | Centennial 20         | 8/7/2018  | 207 | 51.6 | 2.43  |
| 181652-05 | Centennial 20         | 8/21/2018 | 114 | 66.6 | 3.74  |
| 181809-05 | Centennial 20         | 9/4/2018  | 124 | 57.6 | 4.56  |
| 181538-05 | Centennial 20 Blank   | 8/7/2018  | < 2 | 9.17 | 0.5   |
| 181809-04 | Centennial 20 Dup     | 9/4/2018  | 123 | 73.6 | 3.09  |
| 181280-07 | Engelsby 10           | 7/10/2018 | 492 | 102  | 6.05  |
| 181398-06 | Engelsby 10           | 7/24/2018 | 544 | 44.4 | 5.94  |
| 181538-06 | Engelsby 10           | 8/7/2018  | 480 | 51.9 | 4.36  |
| 181652-06 | Engelsby 10           | 8/21/2018 | 296 | 117  | 14.1  |









| 181809-06 | Engelsby 10           | 9/4/2018  | 197   | 95.3 | 4.15  |
|-----------|-----------------------|-----------|-------|------|-------|
| 181398-07 | Engelsby 10 Blank     | 7/24/2018 | < 2   | < 5  | < 0.2 |
| 181280-08 | Engelsby 10 Field Dup | 7/10/2018 | 500   | 48.4 | 5.99  |
| 181280-09 | Engelsby 20           | 7/10/2018 | 1030  | 103  | 3.12  |
| 181398-08 | Engelsby 20           | 7/24/2018 | 1195  | 121  | 2.56  |
| 181538-07 | Engelsby 20           | 8/7/2018  | 642   | 129  | 1.58  |
| 181652-07 | Engelsby 20           | 8/21/2018 | 370   | 74.2 | 2.25  |
| 181809-07 | Engelsby 20           | 9/4/2018  | 322   | 65.6 | 1.7   |
| 181538-08 | Engelsby 20 Blank     | 8/7/2018  | < 2   | < 5  | < 0.2 |
| 181280-10 | Indian 10             | 7/10/2018 | 288   | 38.9 | 14.5  |
| 181398-09 | Indian 10             | 7/24/2018 | 300   | 38.5 | 3.94  |
| 181538-09 | Indian 10             | 8/7/2018  | 326   | 37.8 | 5.46  |
| 181629-02 | Indian 10             | 8/18/2018 | 41.55 | 180  | 64.9  |
| 181652-08 | Indian 10             | 8/21/2018 | 140   | 43.2 | 4.96  |
| 181809-08 | Indian 10             | 9/4/2018  | 234   | 49.9 | 9.83  |
| 181652-09 | Indian 10 Blank       | 8/21/2018 | < 2   | < 5  | < 0.2 |
| 181398-10 | Indian 10 Field Dup   | 7/24/2018 | 310   | 38.8 | 3.84  |
| 181280-11 | Indian 20             | 7/10/2018 | 131   | 115  | 13.6  |
| 181398-11 | Indian 20             | 7/24/2018 | 322   | 110  | 6.63  |
| 181538-10 | Indian 20             | 8/7/2018  | 206   | 120  | 5.92  |
| 181652-10 | Indian 20             | 8/21/2018 | 55.5  | 68.3 | 11.8  |
| 181809-09 | Indian 20             | 9/4/2018  | 188   | 74.1 | 7.57  |









| 181809-10 | Indian 20 Blank       | 9/4/2018  | < 2   | < 5  | 0.23  |
|-----------|-----------------------|-----------|-------|------|-------|
| 181538-11 | Indian 20 Field Dup   | 8/7/2018  | 205   | 125  | 7.28  |
| 181809-11 | Mallets 10            | 9/4/2018  | 54.5  | 44.4 | 4.61  |
| 181280-12 | Malletts 10           | 7/10/2018 | 48.15 | 41.2 | 6.25  |
| 181398-12 | Malletts 10           | 7/24/2018 | 57    | 36.7 | 3.22  |
| 181538-12 | Malletts 10           | 8/7/2018  | 47.35 | 42.6 | 4.28  |
| 181652-11 | Malletts 10           | 8/21/2018 | 43.45 | 33.5 | 5.5   |
| 181652-12 | Malletts 10 Field Dup | 8/21/2018 | 44.3  | 33.7 | 5.76  |
| 181280-13 | Morehouse 10          | 7/10/2018 | 136   | 32.9 | 10.2  |
| 181398-13 | Morehouse 10          | 7/24/2018 | 185   | 26.2 | 6.18  |
| 181538-13 | Morehouse 10          | 8/7/2018  | 150   | 26   | 2.18  |
| 181629-03 | Morehouse 10          | 8/18/2018 | 38.65 | 48.8 | 8.52  |
| 181652-13 | Morehouse 10          | 8/21/2018 | 49.85 | 32.4 | 3.59  |
| 181809-12 | Morehouse 10          | 9/4/2018  | 145   | 37   | 7.54  |
| 181280-14 | Morehouse 10 Blank    | 7/10/2018 | < 2   | < 5  | < 0.2 |
| 181809-13 | Morehouse 10 Dup      | 9/4/2018  | 141   | 42   | 19.8  |
| 181280-15 | Morehouse 20          | 7/10/2018 | 537.5 | 27.1 | 5.99  |
| 181398-14 | Morehouse 20          | 7/24/2018 | 684   | 24.4 | 1.23  |
| 181538-14 | Morehouse 20          | 8/7/2018  | 486   | 65.3 | 2.48  |
| 181629-04 | Morehouse 20          | 8/18/2018 | 111   | 76.5 | 21.3  |
| 181652-14 | Morehouse 20          | 8/21/2018 | 223   | 28.5 | 2.18  |
| 181809-14 | Morehouse 20          | 9/4/2018  | 520   | 34   | 2.2   |









| 181629-05 | Morehouse 20 Blank | 8/18/2018 | < 2   | < 5  | 0.22  |
|-----------|--------------------|-----------|-------|------|-------|
| 181280-16 | Muddy 10           | 7/10/2018 | 170   | 55.1 | 7.5   |
| 181398-15 | Muddy 10           | 7/24/2018 | 220   | 51.8 | 6.87  |
| 181538-15 | Muddy 10           | 8/7/2018  | 228   | 43.1 | 4.11  |
| 181652-15 | Muddy 10           | 8/21/2018 | 254   | 49.8 | 6.31  |
| 181809-15 | Muddy 10           | 9/4/2018  | 284   | 52.2 | 6.47  |
| 181398-16 | Muddy 10 Blank     | 7/24/2018 | < 2   | < 5  | 0.23  |
| 181280-17 | Muddy 10 Field Dup | 7/10/2018 | 171   | 57.9 | 7.79  |
| 181280-18 | Muddy 20           | 7/10/2018 | 645   | 34.5 | 4.97  |
| 181398-17 | Muddy 20           | 7/24/2018 | 620   | 36.9 | 4.77  |
| 181538-16 | Muddy 20           | 8/7/2018  | 600   | 41.8 | 5.9   |
| 181652-16 | Muddy 20           | 8/21/2018 | 510   | 50.2 | 7.72  |
| 181809-16 | Muddy 20           | 9/4/2018  | 605   | 44.6 | 6.28  |
| 181538-17 | Muddy 20 Blank     | 8/7/2018  | < 2   | < 5  | < 0.2 |
| 181280-19 | Muddy 30           | 7/10/2018 | 31.2  | 107  | 21.1  |
| 181398-18 | Muddy 30           | 7/24/2018 | 33.4  | 102  | 13.3  |
| 181538-18 | Muddy 30           | 8/7/2018  | 34    | 114  | 13.9  |
| 181629-06 | Muddy 30           | 8/18/2018 | 35.7  | 92.3 | 11.5  |
| 181652-17 | Muddy 30           | 8/21/2018 | 38.25 | 84.3 | 16.5  |
| 181809-17 | Muddy 30           | 9/4/2018  | 34.15 | 175  | 23.6  |
| 181652-18 | Muddy 30 Blank     | 8/21/2018 | < 2   | < 5  | < 0.2 |
| 181398-19 | Muddy 30 Field Dup | 7/24/2018 | 33    | 103  | 13.7  |









| 181280-20 | Munroe 10           | 7/10/2018 | 230  | 54.4 | 5.25  |
|-----------|---------------------|-----------|------|------|-------|
| 181398-20 | Munroe 10           | 7/24/2018 | 596  | 69.5 | 8.69  |
| 181538-19 | Munroe 10           | 8/7/2018  | 575  | 64.9 | 8.25  |
| 181652-19 | Munroe 10           | 8/21/2018 | 152  | 52.6 | 5.28  |
| 181809-18 | Munroe 10           | 9/4/2018  | 154  | 62.9 | 6.15  |
| 181809-19 | Munroe 10 Blank     | 9/4/2018  | < 2  | 7.58 | < 0.2 |
| 181538-20 | Munroe 10 Field Dup | 8/7/2018  | 570  | 71.9 | 10.1  |
| 181280-21 | Munroe 20           | 7/10/2018 | 92.9 | 108  | 30.2  |
| 181398-21 | Munroe 20           | 7/24/2018 | 466  | 88.8 | 33.9  |
| 181538-21 | Munroe 20           | 8/7/2018  | 132  | 116  | 9.2   |
| 181652-20 | Munroe 20           | 8/21/2018 | 63   | 55.2 | 6.7   |
| 181809-20 | Munroe 20           | 9/4/2018  | 93.8 | 76.8 | 14.5  |
| 181280-22 | Munroe 20 Field Dup | 7/10/2018 | 92.9 | 90.6 | 27.9  |
| 181280-23 | Potash 10           | 7/10/2018 | 490  | 32   | 2.84  |
| 181398-22 | Potash 10           | 7/24/2018 | 872  | 31.6 | 2.39  |
| 181538-22 | Potash 10           | 8/7/2018  | 484  | 41.4 | 4.09  |
| 181652-21 | Potash 10           | 8/21/2018 | 416  | 74.3 | 12.1  |
| 181809-21 | Potash 10           | 9/4/2018  | 590  | 44   | 2.92  |
| 181280-24 | Potash 20           | 7/10/2018 | 470  | 31.7 | 0.98  |
| 181398-23 | Potash 20           | 7/24/2018 | 832  | 30.3 | 1.12  |
| 181538-23 | Potash 20           | 8/7/2018  | 416  | 33.8 | 1.02  |
| 181629-07 | Potash 20           | 8/18/2018 | 187  | 74   | 8.71  |



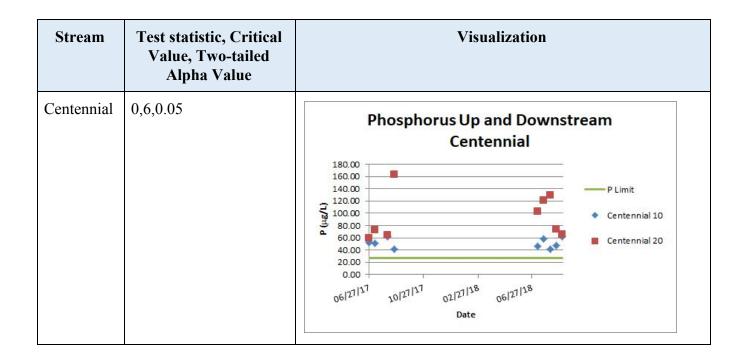




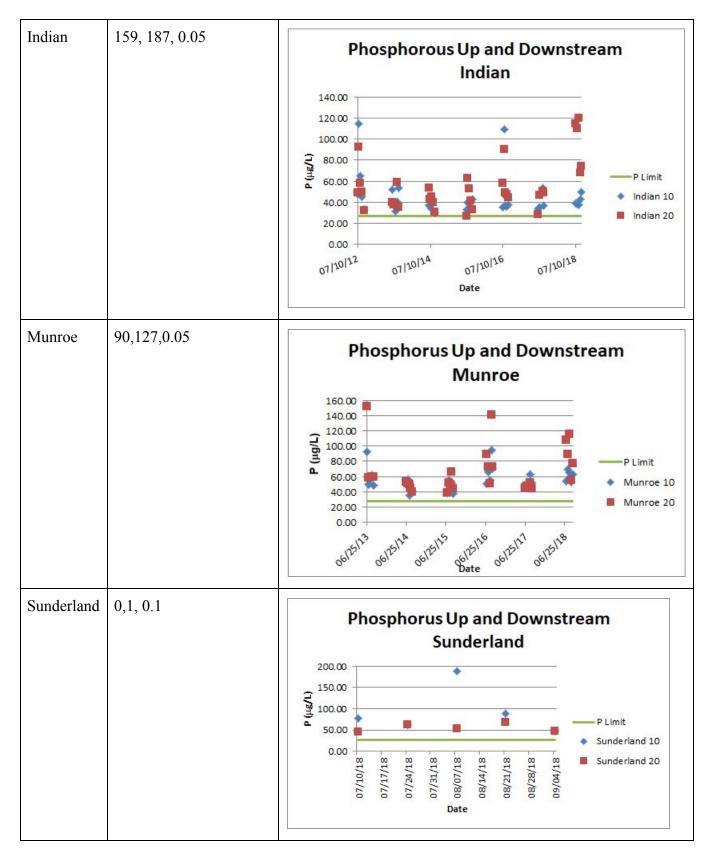


| 181652-22 | Potash 20           | 8/21/2018 | 460   | 37.8  | 1.39  |
|-----------|---------------------|-----------|-------|-------|-------|
| 181809-22 | Potash 20           | 9/4/2018  | 823   | 45.5  | 2.93  |
| 181398-24 | Potash 20 Field Dup | 7/24/2018 | 828   | 30.3  | 1.35  |
| 181280-25 | Potash 30           | 7/10/2018 | 338   | 104   | 3.13  |
| 181398-25 | Potash 30           | 7/24/2018 | 332   | 98    | 3.39  |
| 181538-24 | Potash 30           | 8/7/2018  | 416   | 55.1  | 4.09  |
| 181652-23 | Potash 30           | 8/21/2018 | 348   | 71.8  | 32    |
| 181809-23 | Potash 30           | 9/4/2018  | 216   | 119   | 11.3  |
| 181538-25 | Potash 30 Field Dup | 8/7/2018  | 416   | 54.6  | 4.42  |
| 181280-26 | Potash 40           | 7/10/2018 | 607.5 | 252   | 50.2  |
| 181398-26 | Potash 40           | 7/24/2018 | 736   | 277.8 | 39    |
| 181538-26 | Potash 40           | 8/7/2018  | 855   | 847.8 | 23.3  |
| 181652-24 | Potash 40           | 8/21/2018 | 720   | 72.1  | 20.8  |
| 181809-24 | Potash 40           | 9/4/2018  | 767   | 143   | 63.3  |
| 181652-25 | Potash 40 Field Dup | 8/21/2018 | 715   | 70.1  | 12.2  |
| 181280-27 | Sunderland 10       | 7/10/2018 | 176   | 77.8  | 11.2  |
| 181398-27 | Sunderland 10       | 7/24/2018 | 185   | 62.7  | 5.41  |
| 181538-27 | Sunderland 10       | 8/7/2018  | 186   | 188   | 16    |
| 181652-26 | Sunderland 10       | 8/21/2018 | 187   | 89.2  | 2.24  |
| 181809-25 | Sunderland 10       | 9/4/2018  | 202   | 47    | 5.31  |
| 181652-27 | Sunderland 10 Blank | 8/21/2018 | < 2   | < 5   | < 0.2 |
| 181809-26 | Sunderland 10 Dup   | 9/4/2018  | 200   | 51.7  | 7.48  |








| 181280-28 | Sunderland 20       | 7/10/2018 | 208 | 45.1 | 6.07  |
|-----------|---------------------|-----------|-----|------|-------|
| 181398-28 | Sunderland 20       | 7/24/2018 | 156 | 62.4 | 11.4  |
| 181538-28 | Sunderland 20       | 8/7/2018  | 178 | 53.3 | 8.57  |
| 181652-28 | Sunderland 20       | 8/21/2018 | 131 | 68.9 | 17.6  |
| 181809-27 | Sunderland 20       | 9/4/2018  | 168 | 46.6 | 6.89  |
| 181809-28 | Sunderland 20 Blank | 9/4/2018  | < 2 | < 5  | < 0.2 |
| 181280-29 | Sunnyside 10        | 7/10/2018 | 900 | 21.5 | 4.91  |
| 181398-29 | Sunnyside 10        | 7/24/2018 | 875 | 22.3 | 8.07  |
| 181538-29 | Sunnyside 10        | 8/7/2018  | 775 | 13   | 4.37  |
| 181652-29 | Sunnyside 10        | 8/21/2018 | 560 | 13.9 | 7.77  |
| 181809-29 | Sunnyside 10        | 9/4/2018  | 755 | 66.1 | 30.1  |

## Appendix D. Statistically Different Phosphorus Up and Downstream





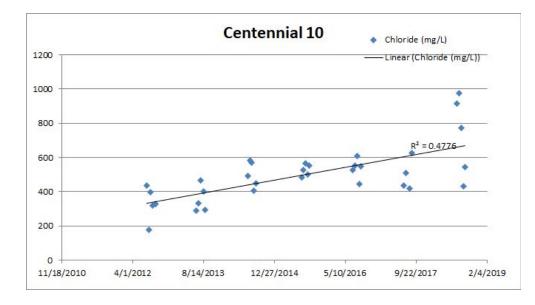


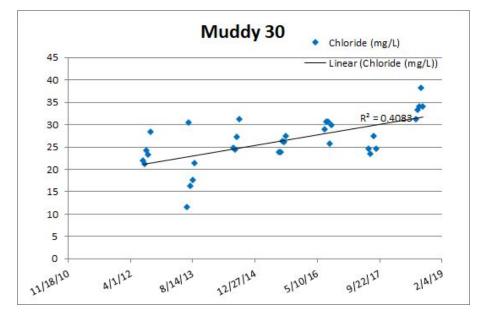


| Site   | K, Critical Value, Two<br>tailed Alpha Value | Visualization                                                                                                                     |
|--------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Muddy  | 26.85, 5.99, 0.05                            | Phosphorus Up and Downstream<br>Muddy<br>400.00<br>50.00<br>250.00<br>200.00<br>150.00<br>50.00<br>50.00<br>0.00<br>50.00<br>0.00 |
| Potash | 43.94, 7.81, 0.05                            | Phosphorous Up and Downstream<br>Potash - Without Outlier                                                                         |

# Appendix E. Statistically Different Chloride Up and Downstream

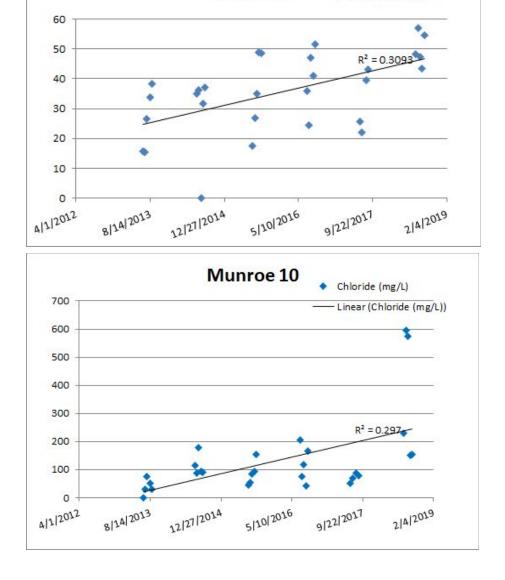



| Centennial | 0, 6, 0.05   | Chloride Up and Downstream<br>Centennial<br>1200.00<br>800.00<br>600.00<br>000<br>000<br>000<br>000<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Engelsby   | 0, 6, 0.05   | Cl limit<br>1400.00<br>1400.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>1000.00<br>10 |
| Indian     | 1, 187, 0.05 | Chloride Up and Downstream<br>Indian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Morehouse  | 0, 1, 0.1    | Chloride Up and Downstream<br>Morehouse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |




| Munroe | 9, 117, 0.05                                    | Chloride Up and Downstream<br>Munroe |
|--------|-------------------------------------------------|--------------------------------------|
| Site   | K, Critical Value,<br>Two tailed Alpha<br>Value | Visualization                        |
| Muddy  | 57.23, 5.99, 0.05                               | Chloride Up and Downstream<br>Muddy  |
| Potash | 8.33, 7.81, 0.05                                | Chloride Up and Downstream<br>Potash |

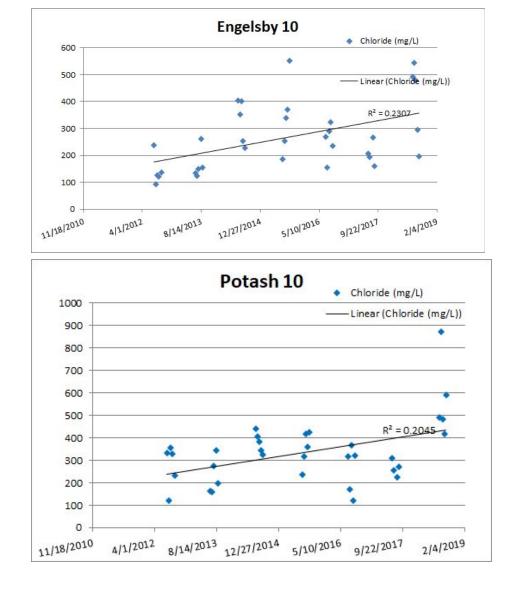
**Appendix F. Notable Trends in Chloride Increases Over Time By Site.** Sorted in descending order by R2 values.



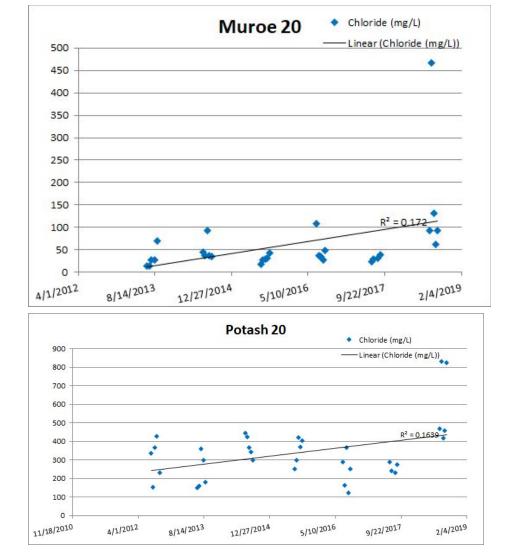


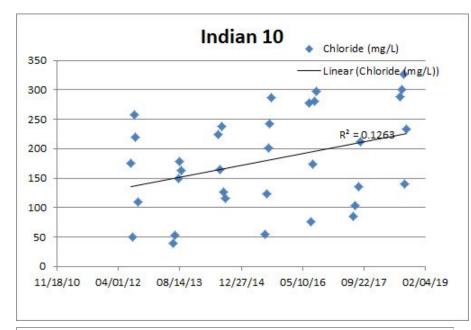








Malletts


Chloride (mg/L)

