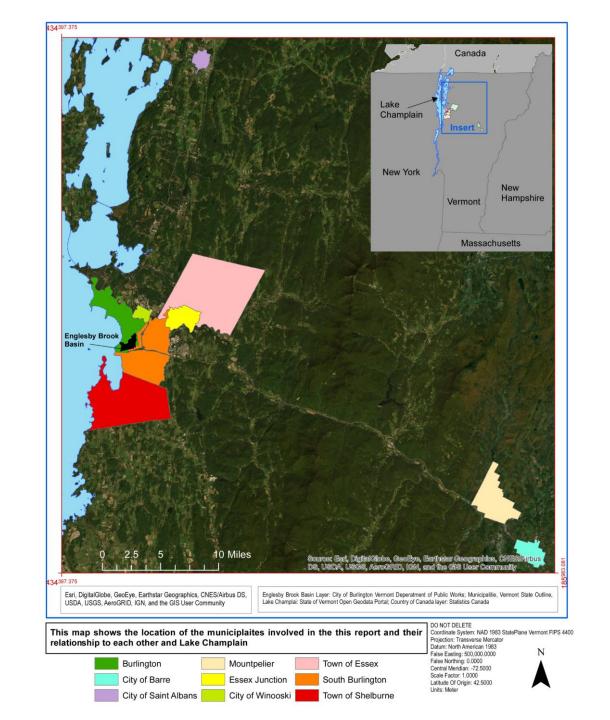
Estimated Phosphorus Load Reductions from Leaf Litter Removal in the Lake Champlain drainage area, Vermont

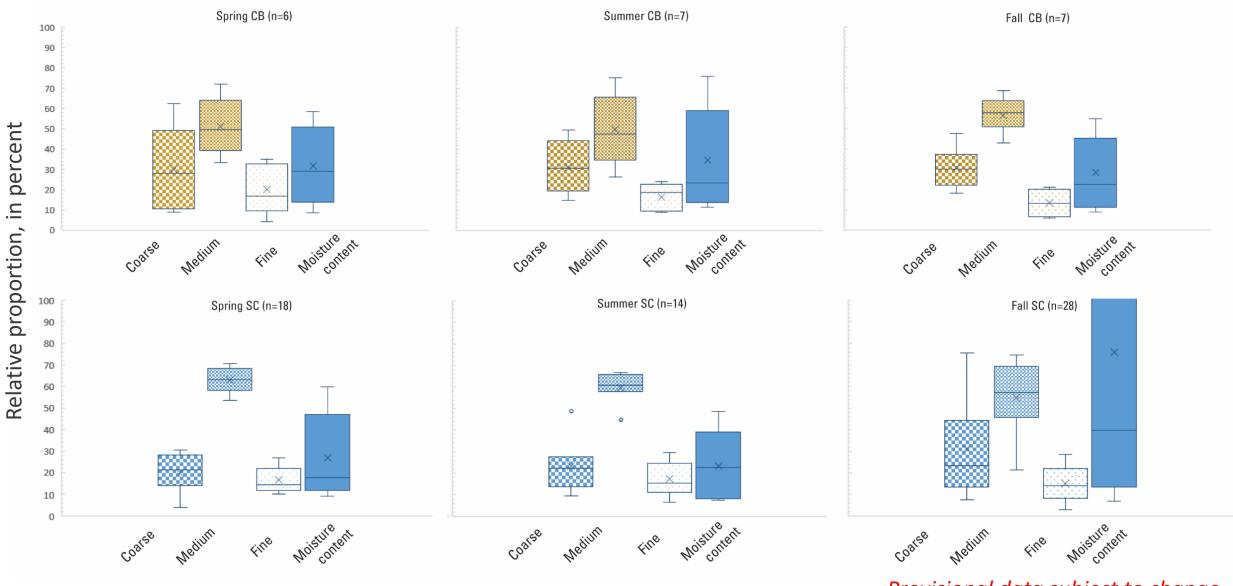
Prepared in cooperation with:

Chittenden County Regional Planning Committee

Vermont Department of Environmental Conservation

City of South Burlington and other cooperating Vermont municipalities





Study background

- Recent studies and WI DNR policy show potential for increasing credits for leaf removal
- Nine cooperating municipalities
- Seven MS4/TMDL communities
- Characterize physiochemistry of Catch Basin (CB) and Street Cleaner (SC) solids collected between Sept 2017 and Nov 2018
- Interim credits and modeling to explore potential increase of load reduction credits for leaf management

Grain-size distribution

Provisional data subject to change

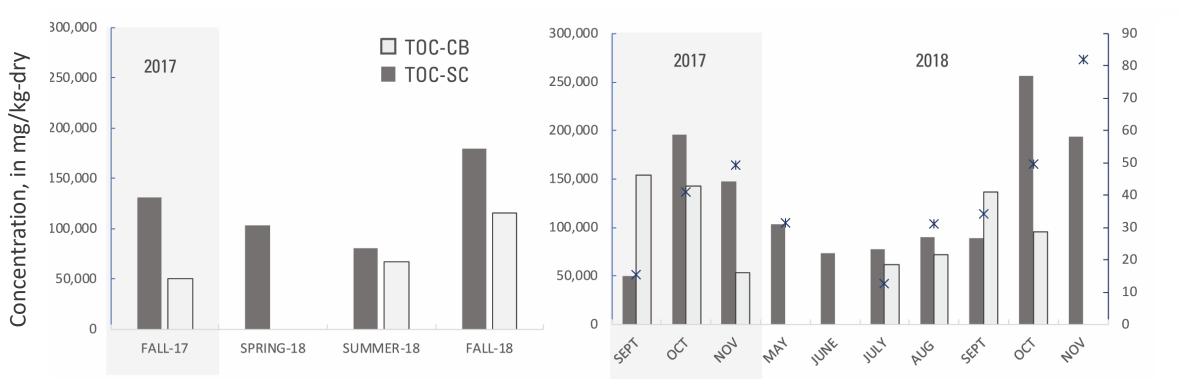
Solid Sample Analytes

 Submit samples to RTI Labs, MI for analysis of total organic carbon, total Kjeldahl nitrogen, and total phosphorus

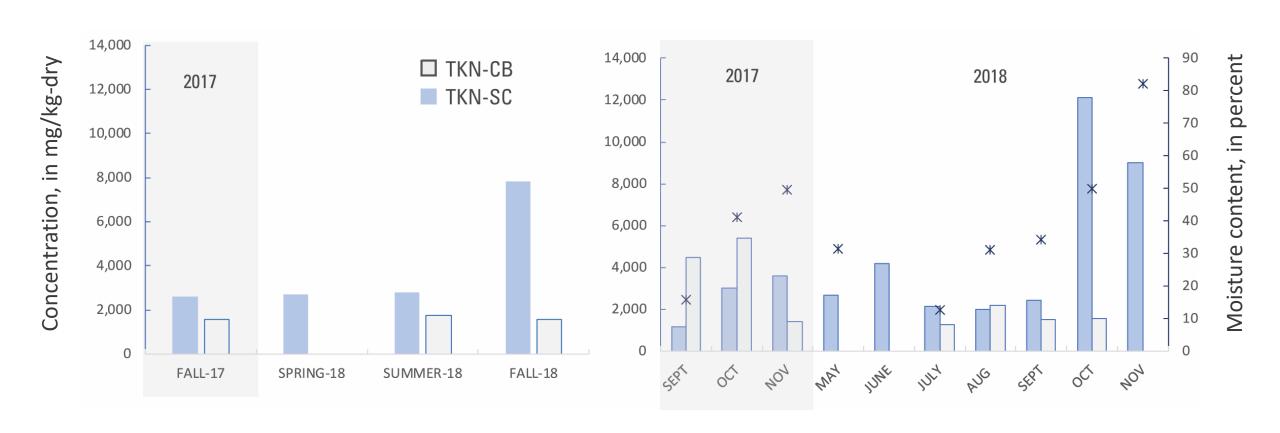
Analyte	Method	Reporting level	Unit
Total organic carbon	EPA 415.1	0.5	mg/kg
Total Kjeldahl nitrogen	EPA 351.2	0.5	mg/kg
Total Phosphorus	SM_4500-P-F	0.1	mg/kg

• Includes field and lab replicate samples and blank samples

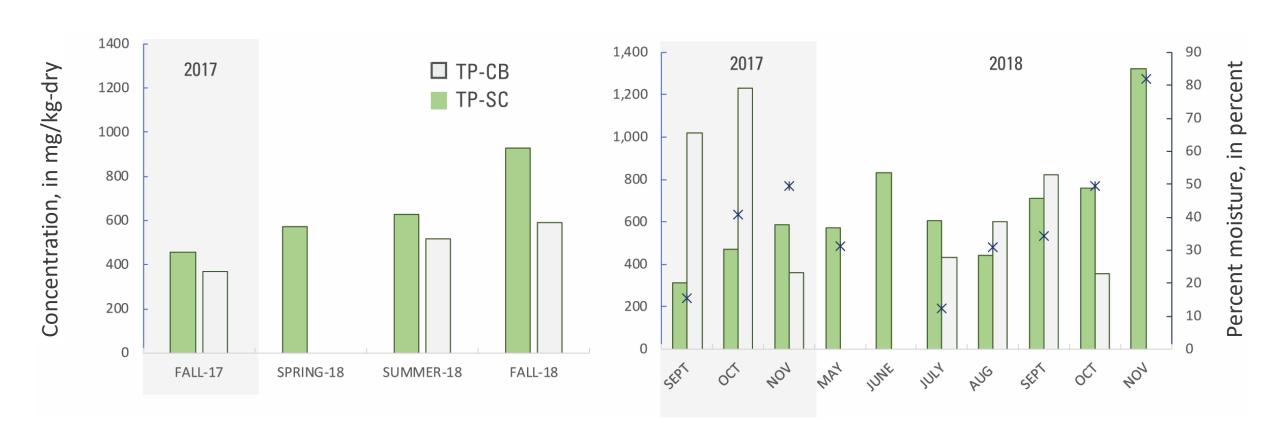
Blank Sample Analysis


	Organic carbon	Total Kjeldahl nitrogen	Total phosphorus	Moisture content
Constituent	(mg/kg)	(mg/kg)	(mg/kg)	(percent)
Reporting limit	1900	14	0.08	1
Blank-not rinsed	260	990	91	1
Blank-acid rinsed-wet	ND	89	0.59	23
Blank-acid rinsed-dry	ND	25	1	ND
Detection level	500		100	
Average (2013)	E250		E50	

Replicate Sample Analysis


Canada			Total avacasia	Total Kialdahl		
Sample	B.A. (* 1.4	005	Total organic	Total Kjeldahl	T	B.A. '
date/time	Material type	GSF	carbon	nitrogen		Moisture content
9/27/17 8:00	СВ	Total	79000	1600	320	14
9/27/17 8:05	CB	Total	29000	1400	350	18
RPD	СВ	Total	92.6	13.3	8.96	25
9/29/17 8:00	СВ	Total	61000	1500	330	28
9/29/17 8:05	СВ	Total	64000	1600	340	34
RPD	СВ	Total	4.80	6.45	2.99	19.4
11/29/17 13:45	SC	Total	190000	2900	520	55
11/29/17 13:50	SC	Total	140000	4300	570	58
RPD	SC	Total	30.3	38.9	9.17	5.3
10/4/18 17:30	SC	Coarse	46000	320	35	
10/4/18 17:35	SC	Coarse	17000	1900	38	
RPD	SC	Coarse	92.1	142	8.22	
10/4/18 17:30	SC	Medium	25000	900	240	
10/4/18 17:35	SC	Medium	23000	1100	250	
RPD	SC	Medium	8.33	20.0	4.08	
10/4/18 17:30	SC	Fine	41000	2100	570	
10/4/18 17:35	SC	Fine	42000	2200	530	
RPD	SC	Fine	2.41	4.65	7.27	

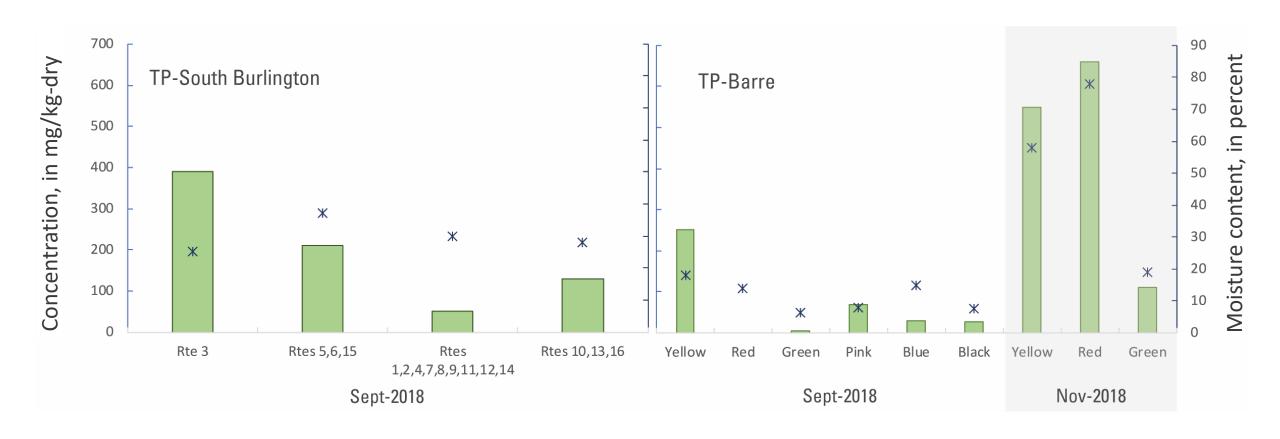
Moisture content, in percent


Seasonal and monthly TOC concentrations

Seasonal and monthly TKN concentrations

Seasonal and monthly total P concentrations

Total P concentrations by SC Routes



September 2018 SC materials

November 2018 SC materials

Total P concentrations by SC Routes

Concentrations of precip and added materials

Sample	Collection date	Total organic carbon	Total dissolved nitrogen	Total nitrogen	Total dissolved phosphorous	Total phosphorous
Bulk precip	8/7/2019	0.133	0.271	0.252	0.010	0.010
1-hr pine needles	11/30/2018	0.785	0.259	0.291	0.011	0.010
2-hr pine needles	11/30/2018	1.34	0.252	0.313	0.019	0.010
1-hr leaves	11/30/2018	1.49	0.335	0.437	0.234	0.202
2-hr leaves	11/30/2018	2.00	0.286	0.442	0.194	0.156
22-hr leaves	11/30/2018	0.519	0.334	0.506	0.298	0.266

Concentrations of precip and added materials

Sample	Collection date	Total organic carbon	Total dissolved nitrogen	Total nitrogen	Total dissolved phosphorous	Total phosphorous
Bulk precip	8/7/2019	0.133	0.271	0.252	0.010	0.010
1-hr pine needles	11/30/2018	0.785	0.259	0.291	0.011	0.010
2-hr pine needles	11/30/2018	1.34	0.252	0.313	0.019	0.010
1-hr leaves	11/30/2018	1.49	0.335	0.437	0.234	0.202
2-hr leaves	11/30/2018	2.00	0.286	0.442	0.194	0.156
22-hr leaves	11/30/2018	0.519	0.334	0.506	0.298	0.266

Englesby Brook concentrations between 1999 and 2009 ranged from 0.019 and 11.9 mg/L and were about 0.367 mg/L on average (Medalie 2007, 2012)

Interim Credits-VTDEC and UVM

- Tree cover analysis supplied to DEC by UVM Spatial Analysis Lab(SAL)
- Interim credits for participating MS4s by Analysis and Assessment Project Dr. Clay Williams (UVM NSC202), and Jim Pease and Hank Ainley (VTDEC)
- Explore if MS4 community were to manage leaves according to the Wisconsin DNR Phosphorus Reduction Credit for Leaf Management:
- What credit based on current sweeping catch basin/street cleaning practices?
- What credit if a town were to increase SC in not only MDR land-use but for streets with > 17% tree cover?

Interim Credits-example

Catch basin cleaning (CB)

MS4	SWAT Drainage Area	TMDL Target Municipal Roads Phosphorus Load Reduction (kg/yr)	Approximate Year Current CB Cleaning Practice Implemented	% of Target Prorated (-10%/yr) to TMDL	Current Catchbasin Cleaning Frequency	Credit (Assumes
St. Albans	St. Albans Bay - DD	20.79	2000	0.00	1 every year	1.36

Interim Credits-example

Catch basin cleaning (CB)

MS4	SWAT Drainage Area	TMDL Target Municipal Roads Phosphorus Load Reduction (kg/yr)	Approximate Year Current CB Cleaning Practice Implemented	% of Target Prorated	Current Catchbasin Cleaning Frequency	Credit (Assumes
St. Albans	St. Albans Bay - DD	20.79	2000	0.00	1 every year	1.36

Street cleaning (SC)

MS4	SWAT Drainage Area	TMDL Target Municipal Roads Phosphorus Load Reduction (kg/yr)	Approximate Year Current Sweeping Practice Implemented	Current Sweeping Credit % of Target Prorated (-10%/yr) to TMDL Monitoring Period (2000-2009)	Total Credits for Current Practices as % of Target
St. Albans	St. Albans Bay - DD	20.79	2017	10.89	10.9

Interim Credits-example

Leaf management

Sweeper Route ID	SWAT Drainage Area	Sweeping Frequency	Loading Rate kg/ac/yr	Route Acres per SWAT Drainage	Impervious acreage per SWAT Drainage	Tree Cover Percentage Per SWAT Drainage	Phosphorus Load kg/yr	Route Credit if Wisconsin Method Implemented kg/yr	Total Additional Credits as % of Target
Downtown	St. Albans Bay - DD	Twice Weekly	1.2	31.9	17.4	<17%			
East	St. Albans Bay - DD	Monthly	1.2	71.5	25.8	28.5	32.0	5.4	26.2
West	St. Albans Bay - DD	Monthly	1.2	61.1	28.6	<17%			

Interim Credits

 Leaf management by SWAT drainage area within each MS4 community

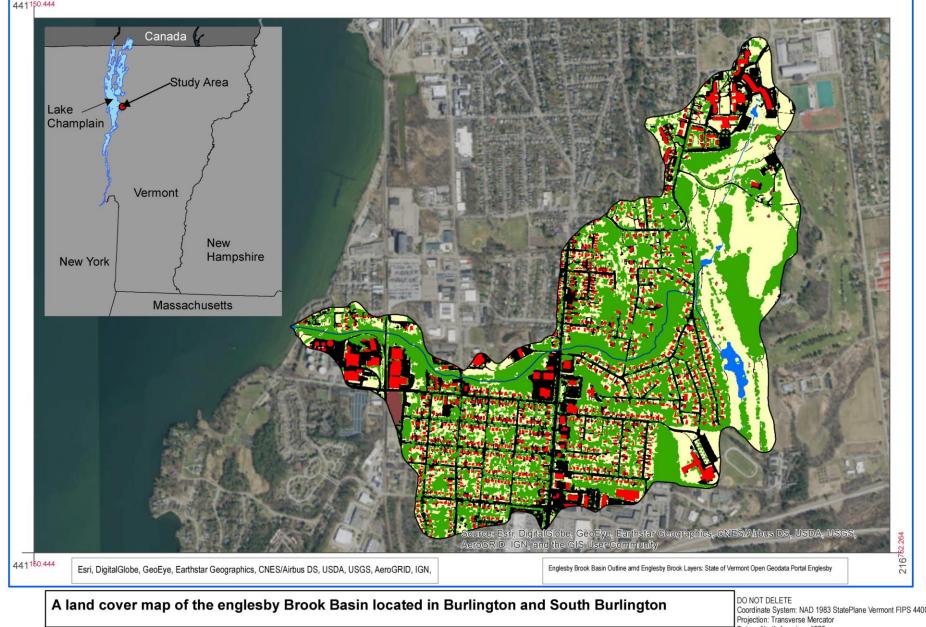
SWAT Drainage Area	Phosphorus Load kg/yr	Route Credit if Wisconsin Method Implemented kg/yr	Total Additional Credits as % of Target						
	Burlington								
Burlington Bay - DD	129.9	22.1	61.8						
Winooski River	80.0	13.6	67.6						
LaPlatte River	4.34	0.74	44.1						
Main Lake - DD	4.25	0.72	87.1						
	S	aint Albans							
St. Albans Bay - DD	32.0	5.44	26.2						
	,	Winooski							
Winooski River	20.5	3.48	21.7						
	S	Shelburne							
LaPlatte River	38.6	6.57	24.7						
	Sout	h Burlington							
Burlington Bay - DD	3.42	0.581	50.9						
Winooski River	39.0	6.62	30.3						
LaPlatte River	86.6	14.7	38.2						
	Es	sex Junction							
Malletts Bay - DD	8.78	1.49	19.3						
Winooski River	67.2	11.4	74.3						
Essex									
Lamoille River	12.1	2.06	53.9						
Malletts Bay - DD	11.4	1.94	29.2						
Winooski River	102	17.4	65.4						

Provisional data subject to change

Englesby Brook basin

• DEC (VT05-10): 384 acres

• FRP (Stone2017): 605 acres


• Medalie 2007:

Topo: 595 acres

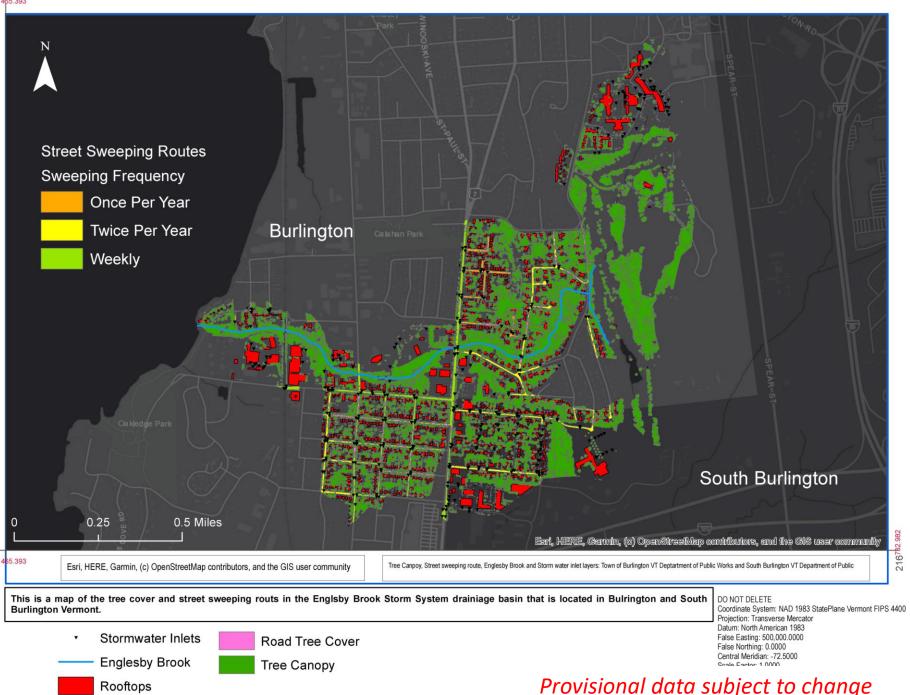
Sewer: 518 acres

• SLAMM 2020:

non-CSO: 535 acres

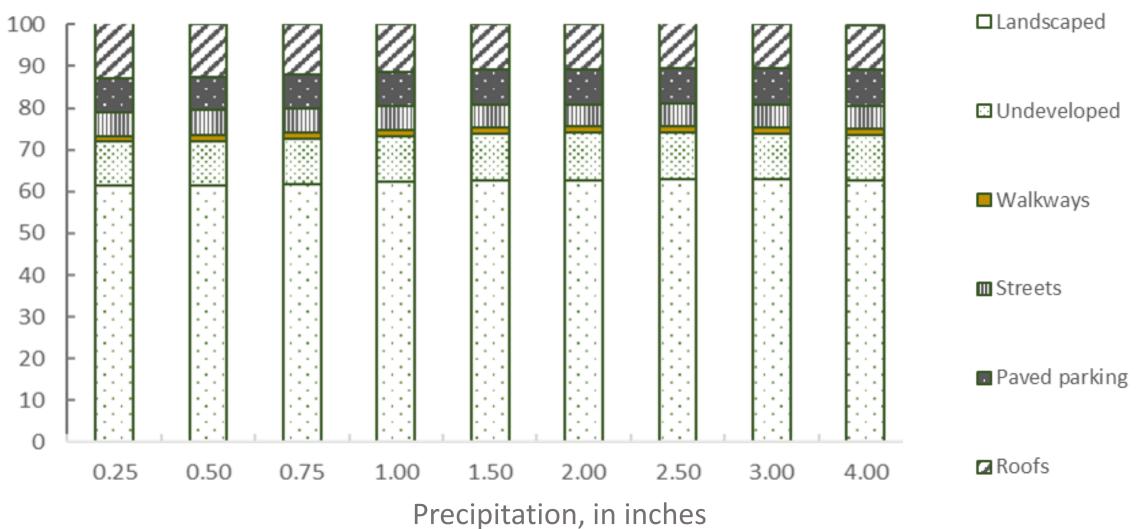
Englesby Land Cover Roads Grass/Shrubs

Water Railroads Buildings

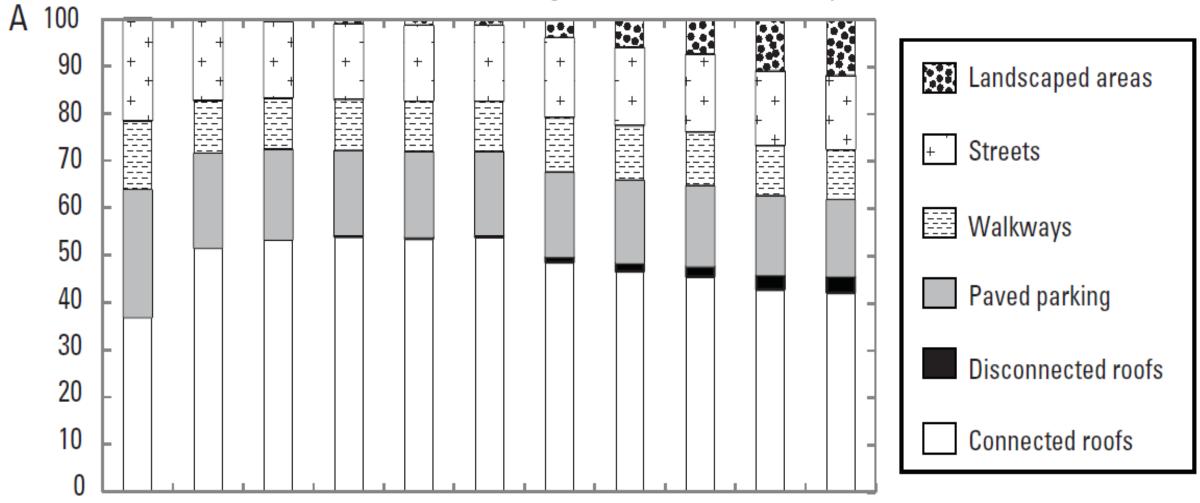

Tree Canopy Other Paved Bare Soil Provis

DO NOT DELETE
Coordinate System: NAD 1983 StatePlane Vermont FIPS 4400
Projection: Transverse Mercator
Datum: North American 1983
False Easting: 500,000.0000
False Northing: 0.0000
Central Meridian: -72.5000
Scale Factor: 1.0000

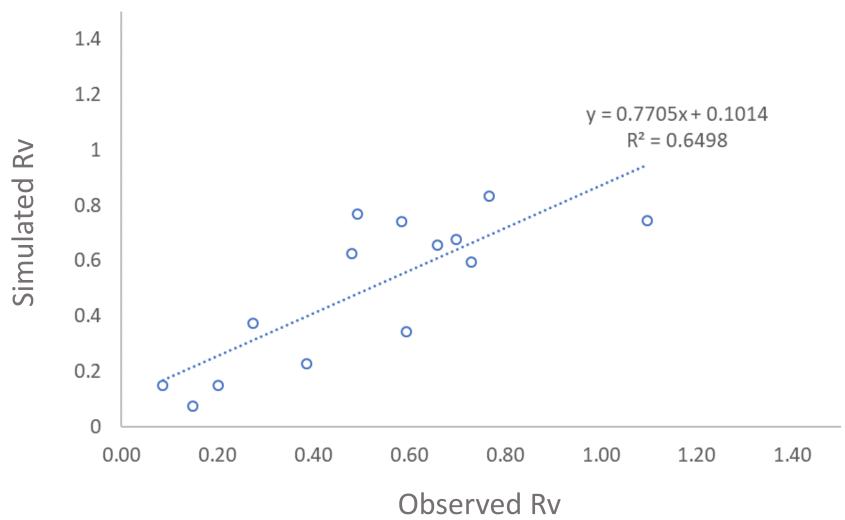
Bare Soil Provisional data subject to change

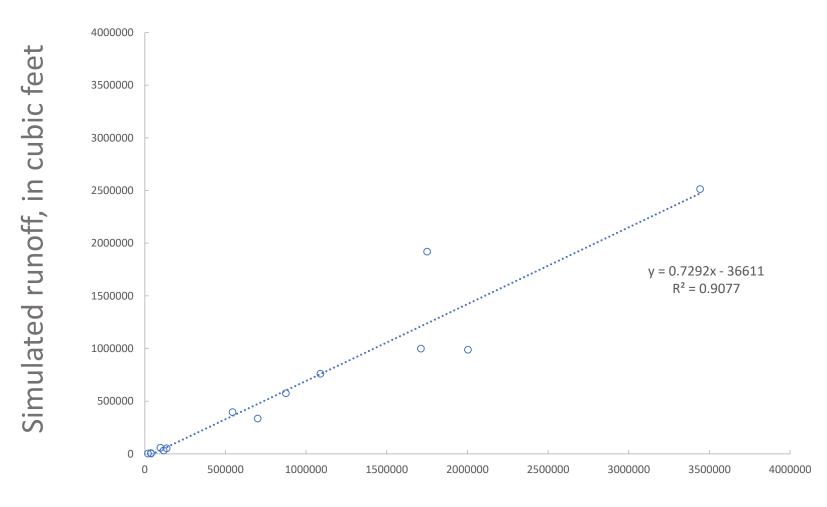

Englesby Brook basin

 Tree cover and SC routes by frequency in **Burlington** and South Burlington



Provisional data subject to change


Percent contributions of major source areas


Percent contributions of major source areas-Cambridge, MA study

Simulated vs Observed Runoff Coefficients

Simulated vs Observed Runoff

Observed runoff, in cubic feet

Summary

- Vermont study area CB and SC materials have similar GSF distributions
- CB materials less sensitive to seasonality
- CB coarser in spring/summer and SC coarser in fall
- SC materials dominated by organics/leaves in the fall
- Blank samples indicate equipment not a source of bias
- Replicates good for total P, more variable for TOC and TKN (coarse)
- Catch Basin TOC, TKN, and total P conc highest in fall samples
- Street Cleaning TOC, TKN, and total P conc highest in fall 18 and June 18
- Estimated total P content in CB and SC piles similar to CSB (2016)

Summary

- Interim credits show potential for increasing CB, SC and Leaf credits
- SLAMM runoff calibration to 1999 data considered good
- Calibrated SLAMM scenario results to evaluate interim credits results and support development of long term credits

Next Steps

- Complete calibration for pollutants (Phosphorus) with 1999 data
- Validate model performance with 2000 data
- Run model scenarios to support development of long-term credits
- Complete draft and submit for Center review- May 1, 2020
- Technical reviewers: Laura Medalie –USGS, NEWSC, VT-NH District
 Judy Horwatich –USGS, WIWSC, Milwaukee

