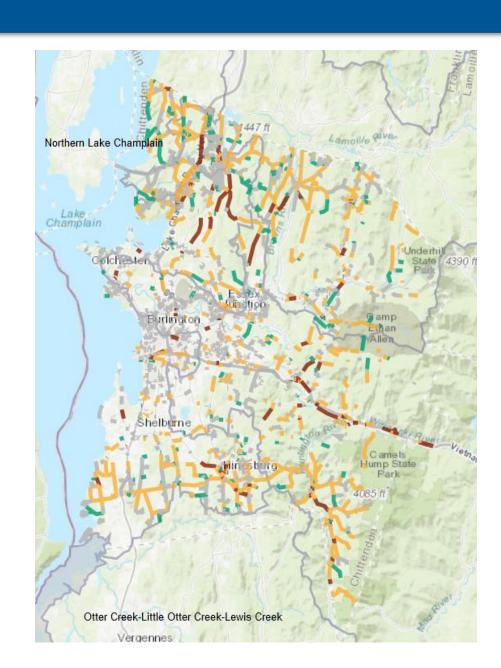


Transportation Resilience Planning Tool (TRPT)

CCRPC | March 2, 2022



Agenda

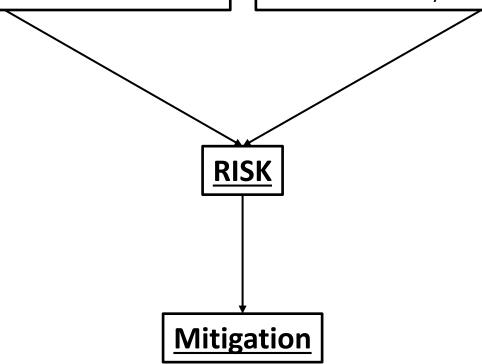
- TRPT
- Key Components & Definitions
- TRPT as a resource
- Current Progress
- TRPT app demo

Transportation Resilience Planning Tool

The Transportation Resilience Planning Tool (TRPT) is a web-based application that aims to improve the resilience of Vermont's road network against flood events by:

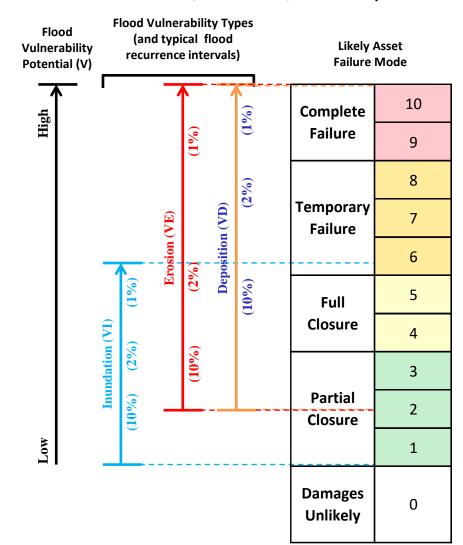
- 1. Assessing vulnerability of roads and structures
- 2. Determining <u>critical</u> locations on the transportation network
- 3. Assessing flood <u>risk</u> to roads and structures and determining <u>mitigation</u> strategies

Project partners/architects:

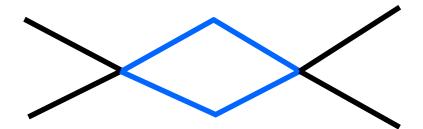

- State of Vermont agencies
- Regional Planning Commissions
- Project Consultants:
 - Fitzgerald Environmental, Stone Environmental, Dubois & King, Smart Mobility, SLR Consulting, UVM

VULNERABILITY

- Watershed and River Corridor Analysis
- 10-year, 50-year, and 100-year floods
- Road, Bridges, and Culverts
- Failure Mode

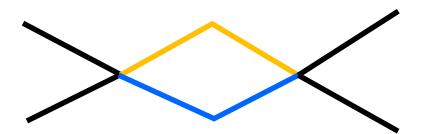

CRITICALITY

- State and Local Roads
- Novel Consideration of Vulnerability
- 1,000 Simulations of Network Disruption
- Failures and Delays



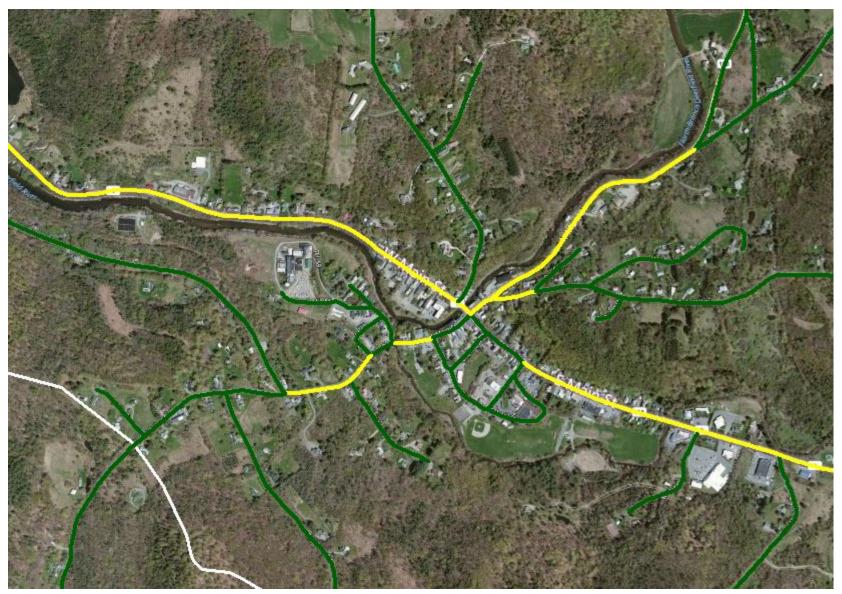
Vulnerability Process	Other Names	Definition	Photograph
Inundation Example: Flooding of an Elm Street parking lot in Brattleboro along Whetstone Brook (Photo courtesy Town of Brattleboro)	Flooding Submergence Ponding	Submergence of a crossing or low spot in the road due to rising floodwaters where road closures take place, yet the facility is typically not damaged or is operating shortly or immediately after the floodwaters recede.	
Erosion Example: Washout of U.S. Route 4 in Mendon (Photo courtesy of J. Louisos)	Undercutting Scour Washout Downcutting	Erosion of the banks, channel bed, road embankment, and structure abutments/footings due to high-velocity moving material downstream. Undercutting results in high-impact events such as bank erosion, structure failure, and road embankment washout that requires immediate repairs prior to reopening roads. Widespread road embankment failure can take weeks to restore.	
Deposition Example: Deposition along Route 100 from Money Brook in Plymouth, VT (Photo courtesy of M. Tucker)	Debris buildup Clogging Accumulation	The deposition of sediment or large wood that can clog structures and reduce the space in a channel to carry floodwaters. Deposition typically leads to washout of the road fill near a structure, bank erosion and channel widening, or rapid channel relocation (i.e., avulsion).	

- Vulnerability estimated at road embankments, bridges, and culverts.
- Assigned maximum from inundation, erosion, and deposition.


Network Criticality Index

Low criticality – Parallel route

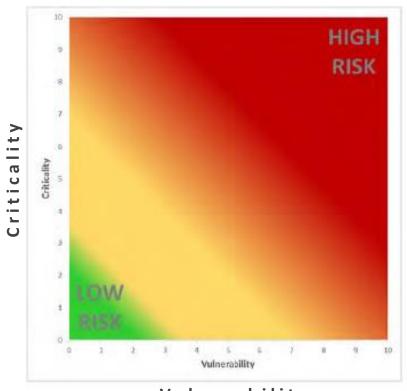
High criticality - No parallel route



Moderate criticality – Parallel route yet one is vulnerable

High criticality – Both routes vulnerable

Key Definitions: Critical Closeness Accessibility


Criticality Scoring and Variables

SCORE	Key Link in Network Criticality Index (High or Medium)		Critical Closeness Accessibility (UVM)		Locally Important for daily regular function or for detour*	Combined Score for Map Display
10=	High or Medium	AND	High	AND	У	
9=	High or Medium	AND	Medium	AND	У	
8=	High or Medium	AND	High or Medium	AND	n	HIGH (RED)
7=	High or Medium	AND	Low	AND	У	THOTT (NED)
6=	Low	AND	High	AND	У	
5=	Low	AND	Medium	AND	У	
4=	High or Medium	AND	Low	AND	n	MEDIUM
3=	Low	AND	High or Medium	AND	n	(YELLOW)
2=	Low	AND	Low	AND	У	(TELLOW)
1=	Low	AND	Low	AND	n	LOW (GREEN)

Risk Assessment

Risk is the average of Vulnerability and Criticality scores

Risk Plot

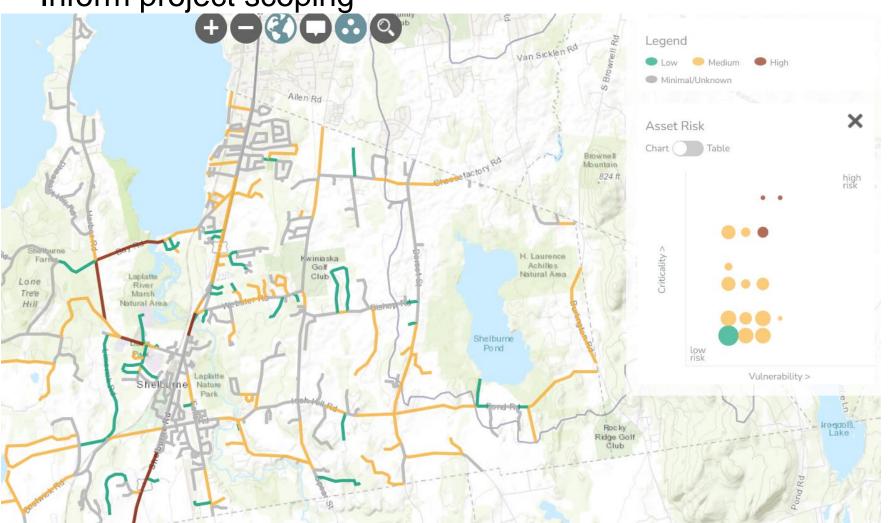
Vulnerabilit	V	٧	١
--------------	---	---	---

Value	Risk
> 5	High
2-5	Medium
0-2	Low

Mitigation

- River and Road Stabilization
- Conveyance of Flood Flows
- FloodplainProtection/RelocateRoads
- Improve vegetation

Mitigation


Filter (TRPT Name)	Options (Listed in Order of Presentation)	Definition
Initial River Impact	Low (L)	None/Low impacts, return to nature
(Initial River Impact)	Moderate (M)	Moderate intensity and impacts
	High (H)	High intensity and impacts
Transportation Network Impact	Low (L)	None to small footprint change
(Network Impact)	Moderate (M)	Some changes to network
	High (H)	Large changes to network such as relocations and ROW issues
Implementation Time Frame	Short-term (S)	Short-term repair to get/keep road open
(Short or Long Term)	Long-term (L)	Permanent change to setting, > 5-year implementation time
Project Application Scale	Point (P)	
(Application Scale)	Road segment (RS)	Less than 0.5 miles long
	River reach (RR)	0.5 to 1 mile long
	Watershed (W)	

TRPT as a Resource

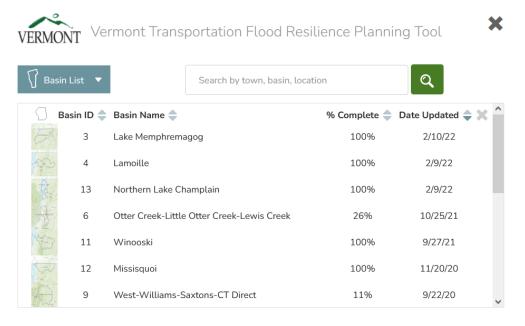
 Highlight vulnerable infrastructure Capital programming

Hazard mitigation planning

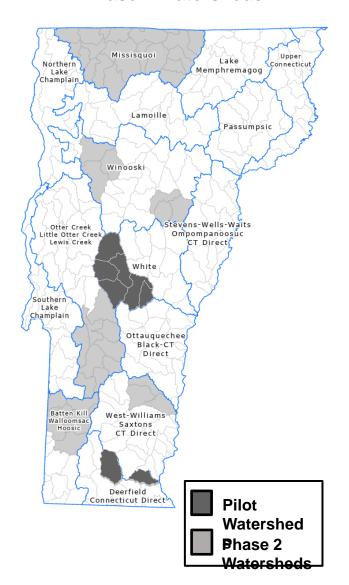
Inform project scoping

TRPT as a Resource

- Identify/prioritize vulnerable locations, create list of potential solutions based on "strategies" outlined in TRPT tool
- Municipal budgeting, grant applications- focus on most vulnerable locations. Are there culverts or projects on specific roads that should be prioritized?


Mitigation Strategies		
River/Road Stabilization	Armor riverbanks (riprap) or road embankment	
Conveyance of Flood Flows	Restore flood benches, floodplains	
Floodplain Protection/Relocate Roads	Adjust road alignment, conserve river corridors, buyout flood prone properties	
Improve Vegetation	Install bank vegetation Riparian buffer plantings	

Current Status


Pilot and Phase 2 watersheds covered 20% of state

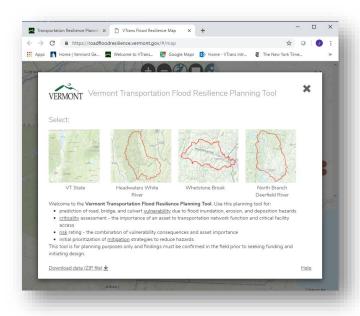
- Pilot completed April, 2018
- Phase 2 completed Sept, 2020

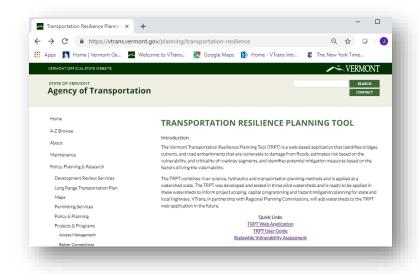
Phase 3 –

TRPT Completed Areas – Pilot and Phase 2 Watersheds

Links to TRPT Websites

Direct link to TRPT


https://roadfloodresilience.vermont.gov/#/map


Link to VTrans TRPT Website

https://vtrans.vermont.gov/planning/transportation-resilience

• Link to statewide Vulnerability, Criticality and Risk Assessment

https://vtrans.vermont.gov/planning/transportation-resilience/statewide

